Your search

In authors or contributors
Topic
  • Lipedema is an underdiagnosed painful adipose tissue disorder that occurs almost exclusively in women, with onset manifesting at puberty or at times of hormonal change. Unlike many fat disorders, diet and exercise have little to no impact on the prevention or progression of this disease. Estrogens control the distribution of body fat and food intake, regulate leptin expression, increase insulin sensitivity, and reduce inflammation through signaling pathways mediated by its receptors, estrogen receptor alpha (ERα) and ERβ. This review will focus on understanding the role of estrogen in the pathogenesis of the disease and envisage potential hormonal therapy for lipedema patients.

  • Lipedema is a painful fat disease of loose connective tissue usually misdiagnosed as lifestyle-induced obesity that affects ~10% of women of European descent as well as other populations. Lipedema is characterized by symmetric enlargement of the buttocks, hips, and legs due to increased loose connective tissue; arms are also affected in 80% of patients. Lipedema loose connective tissue is characterized by hypertrophic adipocytes, inflammatory cells, and dilated leaky blood and lymphatic vessels. Altered fluid flux through the tissue causes accumulation of fluid, protein, and other constituents in the interstitium resulting in recruitment of inflammatory cells, which in turn stimulates fibrosis and results in difficulty in weight loss. Inflammation and excess interstitial substance may also activate nerve fibers instigating the painful lipedema fat tissue. More research is needed to characterize lipedema loose connective tissue structure in depth, as well as the form and function of blood and lymphatic vessels. Understanding the pathophysiology of the disease will allow healthcare providers to diagnose the disease and develop treatments.

  • Lipedema is a chronic, idiopathic, and painful disease characterized by an excess of adipose tissue in the extremities. The goal of this study is to characterize the gene expression of estrogen receptors (ERα and ERβ), G protein-coupled estrogen receptor (GPER), and ER-metabolizing enzymes: hydroxysteroid 17-beta dehydrogenase (HSD17B1, 7, B12), cytochrome P450 (CYP19A1), hormone-sensitive lipase (LIPE), enzyme steroid sulfatase (STS), and estrogen sulfotransferase (SULT1E1), which are markers in Body Mass Index (BMI) and age-matched non-lipedema (healthy) and lipedema ASCs and spheroids. Flow cytometry and cellular proliferation assays, RT-PCR, and Western Blot techniques were used to determine the expression of ERs and estrogen-metabolizing enzymes. In 2D monolayer culture, estrogen increased the proliferation and the expression of the mesenchymal marker, CD73, in hormone-depleted (HD) healthy ASCs compared to lipedema ASCs. The expression of ERβ was significantly increased in HD lipedema ASCs and spheroids compared to corresponding healthy cells. In contrast, ERα and GPER gene expression was significantly decreased in estrogen-treated lipedema spheroids. CYP19A1 and LIPE gene expressions were significantly increased in estrogen-treated healthy ASCs and spheroids, respectively, while estrogen upregulated the expression of PPAR-ϒ2 and ERα in estrogen-treated lipedema-differentiated adipocytes and spheroids. These results indicate that estrogen may play a role in adipose tissue dysregulation in lipedema.

  • Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.

  • The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-&gamma; and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.

  • Background and Aim: Lipedema is a common painful SAT disorder characterized by enlargement of fat primarily in the legs of women. Case reports of lipedema tissue samples demonstrate fluid and fibrosis in the interstitial matrix, increased macrophages, and adipocyte hypertrophy. The aims of this project are to investigate blood vasculature, immune cells, and structure of lipedema tissue in a cohort of women. Methods: Forty-nine participants, 19 controls and 30 with lipedema, were divided into groups based on body mass index (BMI): Non-Obese (BMI 20 to <30 kg/m2) and Obese (BMI 30 to <40 kg/m2). Histological sections from thigh skin and fat were stained with H&E. Adipocyte area and blood vessel size and number were quantified using ImageJ software. Markers for macrophages (CD68), mast cells (CD117), T cells (CD3), endothelial cells (CD31), blood (SMA), and lymphatic (D2-40 and Lyve-1) vessels were investigated by IHC and IF. Results: Non-Obese Lipedema adipocyte area was larger than Non-Obese Controls (p=0.005) and similar to Obese Lipedema and Obese Controls. Macrophage numbers were significantly increased in Non-Obese (p < 0.005) and Obese (p < 0.05) Lipedema skin and fat compared to Control groups. No differences in T lymphocytes or mast cells were observed when comparing Lipedema to Control in both groups. SMA staining revealed increased dermal vessels in Non-Obese Lipedema patients (p < 0.001) compared to Non-Obese Controls. Lyve-1 and D2-40 staining showed a significant increase in lymphatic vessel area but not in number or perimeter in Obese Lipedema participants (p < 0.05) compared to Controls (Obese and Non-Obese). Areas of angiogenesis were found in the fat in 30% of lipedema participants but not controls. Conclusion: Hypertrophic adipocytes, increased numbers of macrophages and blood vessels, and dilation of capillaries in thigh tissue of non-obese women with lipedema suggest inflammation, and angiogenesis occurs independent of obesity and demonstrates a role of altered vasculature in the manifestation of the disease.

  • Lipedema is a connective tissue disorder characterized by increased dilated blood vessels (angiogenesis), inflammation, and fibrosis of the subcutaneous adipose tissue. This project aims to gain insights into the angiogenic processes in lipedema using human umbilical vein endothelial cells (HUVECs) as an in vitro model. HUVECs were cultured in conditioned media (CM) collected from healthy (non-lipedema, AQH) and lipedema adipocytes (AQL). The impacts on the expression levels of multiple endothelial and angiogenic markers [CD31, von Willebrand Factor (vWF), angiopoietin 2 (ANG2), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMPs), NOTCH and its ligands] in HUVECs were investigated. The data demonstrate an increased expression of CD31 and ANG2 at both the gene and protein levels in HUVECs treated with AQL CM in 2D monolayer and 3D cultures compared to untreated cells. Furthermore, the expression of the vWF, NOTCH 4, and DELTA-4 genes decreased. In contrast, increased VEGF, MMP9, and HGF gene expression was detected in HUVECs treated with AQL CM cultured in a 2D monolayer. In addition, the results of a tube formation assay indicate that the number of formed tubes increased in lipedema-treated HUVECs cultured in a 2D monolayer. Together, the data indicate that lipedema adipocyte-CM promotes angiogenesis through paracrine-driven mechanisms.

  • Lipedema is a disease with abnormally increased adipose tissue deposition and distribution. Pain sensations have been described in the clinical evaluation of lipedema, but its etiology remains poorly understood. We hypothesized that pain sensitivity measurements and ex vivo quantitation of neuronal cell body distribution in the skin would be lipedema stage-dependent, and could, thus, serve to objectively characterize neuropathic pain in lipedema. The pain was assessed by questionnaire and peripheral cutaneous mechanical sensitization (von-Frey) in lipedema (n = 27) and control (n = 23) consenting female volunteers. Dermal biopsies from (n = 11) Stages 1–3 lipedema and control (n = 10) participants were characterized for neuronal cell body and nociceptive neuropeptide calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF) distribution. Stage 2 or 3 lipedema participants responded positively to von Frey sensitization in the calf and thigh, and Stage 3 participants also responded in the arm. Lipedema abdominal skin displayed reduced Tuj-1+ neuronal cell body density, compared to healthy controls, while CGRP and NGF was significantly elevated in Stage 3 lipedema tissues. Together, dermal neuronal cell body loss is consistent with hyper-sensitization in patients with lipedema. Further study of neuropathic pain in lipedema may elucidate underlying disease mechanisms and inform lipedema clinical management and treatment impact.

Last update from database: 4/2/25, 8:13 AM (UTC)

Explore