Your search

In authors or contributors
  • Lipedema is a painful fat disorder that affects ~11% of the female population. It is characterized by bilateral, disproportionate accumulation of subcutaneous adipose tissue predominantly in the lower body. The onset of lipedema pathophysiology is thought to occur during periods of hormonal fluctuation, such as puberty, pregnancy, or menopause. Although the identification and characterization of lipedema have improved, the underlying disease etiology remains to be elucidated. Estrogen, a key regulator of adipocyte lipid and glucose metabolism, and female-associated body fat distribution are postulated to play a contributory role in the pathophysiology of lipedema. Dysregulation of adipose tissue accumulation via estrogen signaling likely occurs by two mechanisms: (1). altered adipocyte estrogen receptor distribution (ERα/ERß ratio) and subsequent metabolic signaling and/or (2). increased release of adipocyte-produced steroidogenic enzymes leading to increased paracrine estrogen release. These alterations could result in increased activation of peroxisome proliferator-activated receptor γ (PPARγ), free fatty acid entry into adipocytes, glucose uptake, and angiogenesis while decreasing lipolysis, mitochondriogenesis, and mitochondrial function. Together, these metabolic alterations would lead to increased adipogenesis and adipocyte lipid deposition, resulting in increased adipose depot mass. This review summarizes research characterizing estrogen-mediated adipose tissue metabolism and its possible relation to excessive adipose tissue accumulation associated with lipedema.

  • Lipedema is a multifaceted chronic fat disorder characterized by the bilateral and disproportionate accumulation of fat predominantly in the lower body regions of females. Research strongly supports that estrogen factors likely contribute to the pathophysiology of this disease. We aim to help demonstrate this link by quantifying estrogen factor differences between women with and without lipedema. For time and lipedema adipose tissue conservation, the Protein Simple WES machine will be utilized in place of traditional western blotting. Here, we are interested in evaluating estrogen related factors, such as, but not limited to, estrogen receptors and enzymes involved in the successive conversions of cholesterol and androgens to estrogens in human subcutaneous adipose. Evaluation of these factors within adipose tissue, however, is novel for this instrument. Thus, we optimized tissue lysis and protein extraction for 11 proteins of interest. Antibodies and their working concentrations were determined based upon specific and distinguishable (signal-to-noise) peaks from electropherogram outputs across different tissue lysate concentrations. We found that overnight acetone precipitation proved to be the best procedure for extracting protein from lipid rich adipose tissue samples. Six of the eleven proteins were found to migrate to their expected molecular weights, however, five did not. For proteins that did not migrate as expected, overexpression lysates and empty vector controls were used to validate detection antibodies. Protein extract from subcutaneous adipose tissue and overexpression lysates were then combined to understand if migration was specifically altered by adipose tissue. From these results, we concluded that the lipid rich nature of adipose tissue in combination with the separation matrix designated for use with the WES were preventing the appropriate migration of some proteins rather than non-specific antibody binding or inappropriate preparation methods.

Last update from database: 6/29/24, 7:27 AM (UTC)

Explore

Resource type

Publication

Online resource