Your search
Results 23 resources
-
ICD-10 Coordination and Maintenance Committee Meeting September 8-9, 2020 Lipedema and Lipolymphedema Lipedema, initially described at the Mayo clinic in 1940, is a loose, connective-tissue (fat) disease (lipomatosis) with a pathological deposition of fibrotic fatty tissue on the limbs of women sparing the trunk, hands and feet, resulting in a disproportionate body habitus. There is no specific ICD-10-CM code for lipedema. Deposition of lipedema fat increases with stage and body mass index (BMI) and likely involves sex hormones during times when weight is gained (puberty, pregnancy and menopause). Lipedema is inherited in 60% of women likely through genes affecting microvessels resulting in excess fluid bound to glycosaminoglycans in the interstitial space. Unique to lipedema is fat that is highly resistant to loss by diet, exercise, or bariatric surgery. Lipedema is often confused with secondary obesity or lymphedema. Women with lipedema and/or obesity can develop lymphedema called lipolymphedema, for which there is no ICD-10-CM code. There is no cure for lipedema, but treatments aimed at reducing the lymphedema component of lipedema such as manual decongestive therapy, wrapping, exercise, compression garments and pumps, and some medical foods and medications are helpful. Expertly performed suction assisted lipectomy is the treatment of choice for suitable lipedema patients with an inadequate response to conservative and supportive measures. Lipedema is thought to affect 11% of the female population. Lymphedema is a chronic and progressive swelling caused by a low output failure of the lymphatic system, resulting in the development of a high-protein edema in the tissues. Lymphedema is a lifelong condition for which no cure exists. Lymphedema can be either primary (hereditary) or secondary. Secondary lymphedema is the most common cause of the disease and affects approximately 1 in 1000 Americans. Complications of lymphedema include recurrent bouts of cellulitis and/or lymphangitis, bacterial and fungal infections, lymphangio-adenitis, deep venous thrombosis, poor wound healing, leg ulcers, severe functional impairment, disability, and necessary amputation. Patients with chronic lymphedema for 10 years have a 10% risk of developing lymphangiosarcoma. Praecox lymphedema is currently captured in ICD-10-CM as a secondary lymphedema; it is more accurately classified under code Q82.0: Hereditary lymphedema. With support from the American Vein & Lymphatic Society (AVLS), the requestor is submitting the following modifications to identify and track lipedema and lipolymphedema patients.
-
IN JUNE 2020, the Lipedema ICD-10-CM Committee, with support from the American Vein & Lymphatic Society (AVLS), submitted an application to the US Centers for Disease Control and Prevention to establish new ICD-10-CM codes for lipedema and lipolymphedema, two related adipose tissue disorders. Currently,
-
Patient: Female, 31-year-old, Final Diagnosis: Lipedema, Symptoms: Bruising • leg edema • leg pain, Medication: —, Clinical Procedure: —, Specialty: Endocrinology and Metabolic • Family Medicine • Medicine, General and Internal • Metabolic Disorders and Diabetics • Plastic Surgery • Psychiatry
-
Patient: Female, 41-year-old, Final Diagnosis: Malnutrition, Symptoms: Leg edema • weakness, Medication: —, Clinical Procedure: Lymphatic mapping, Specialty: Dermatology • Endocrinology and Metabolic • Surgery
-
A Case Series of Lymphatic Injuries After Suction Lipectomy in Women with Lipedema - Article abstract #935016
-
Background: Fluid in lymphedema tissue appears histologically as spaces around vessels and between dermal skin fibers. Lipedema is a painful disease of excess loose connective tissue (fat) in limbs, almost exclusively of women, that worsens by stage, increasing lymphedema risk. Many women with lipedema have hypermobile joints suggesting a connective tissue disorder that may affect vessel structure and compliance of tissue resulting in excess fluid entering the interstitial space. It is unclear if excess fluid is present in lipedema tissue. The purpose of this study is to determine if fluid accumulates around vessels and between skin fibers in the thigh tissue of women with lipedema. Methods: Skin biopsies from the thigh and abdomen from 30 controls and 80 women with lipedema were evaluated for dermal spaces and abnormal vessel phenotype (AVP): (1) rounded endothelial cells; (2) perivascular spaces; and (3) perivascular immune cell infiltrate. Women matched for body mass index (BMI) and age were considered controls if they did not have lipedema on clinical examination. Data were analyzed by analysis of variance (ANOVA) or unpaired t-tests using GraphPad Prism Software 7. p < 0.05 was considered significant. Results: Lipedema tissue mass increases beginning with Stage 1 up to Stage 3, with lipedema fat accumulating more on the limbs than the abdomen. AVP was higher in lipedema thigh (p = 0.003) but not abdomen skin compared with controls. AVP was higher in thigh skin of women with Stage 1 (p = 0.001) and Stage 2 (p = 0.03) but not Stage 3 lipedema versus controls. AVP also was greater in the thigh skin of women with lipedema without obesity versus lipedema with obesity (p < 0.0001). Dermal space was increased in lipedema thigh (p = 0.0003) but not abdomen versus controls. Dermal spaces were also increased in women with lipedema Stage 3 (p < 0.0001) and Stage 2 (p = 0.0007) compared with controls. Conclusion: Excess interstitial fluid in lipedema tissue may originate from dysfunctional blood vessels (microangiopathy). Increased compliance of connective tissue in higher stages of lipedema may allow fluid to disperse into the interstitial space, including between skin dermal fibers. Lipedema may be an early form of lymphedema. ClinicalTrials.gov: NCT02838277.
-
Background: In the USA, the Orphan Drug Act of 1983 defines a rare disease as affecting under 200,000 individuals. Dercum’s disease (DD) is a loose connective (adipose) tissue disease characterized by painful lipomas. While considered a rare disease, the prevalence of DD has not been systematically assessed previously. The objective of this paper is to estimate the prevalence of DD to determine if it is rare or not. Results: Estimates of prevalence of DD using PubMed, the UK Biobank, the US Agency for Health Research and Quality Healthcare Cost and Utilization, physician practices, social media forums and internet searches found the prevalence of DD to be less than 200,000 individuals in the US. These prevalence likely overestimate the disease; however, underestimation may also occur because DD is not well known and may be misdiagnosed. Conclusion: DD meets requirements of the Orphan Drug Act to be classified as a rare disease. Further research should focus on representative population samples in the USA to better estimate the prevalence of DD. Estimating the prevalence is an important first step to increase recognition, research efforts and patient care for people living with DD.
-
Lipedema is a chronic, idiopathic, and painful disease characterized by an excess of adipose tissue in the extremities. The goal of this study is to characterize the gene expression of estrogen receptors (ERα and ERβ), G protein-coupled estrogen receptor (GPER), and ER-metabolizing enzymes: hydroxysteroid 17-beta dehydrogenase (HSD17B1, 7, B12), cytochrome P450 (CYP19A1), hormone-sensitive lipase (LIPE), enzyme steroid sulfatase (STS), and estrogen sulfotransferase (SULT1E1), which are markers in Body Mass Index (BMI) and age-matched non-lipedema (healthy) and lipedema ASCs and spheroids. Flow cytometry and cellular proliferation assays, RT-PCR, and Western Blot techniques were used to determine the expression of ERs and estrogen-metabolizing enzymes. In 2D monolayer culture, estrogen increased the proliferation and the expression of the mesenchymal marker, CD73, in hormone-depleted (HD) healthy ASCs compared to lipedema ASCs. The expression of ERβ was significantly increased in HD lipedema ASCs and spheroids compared to corresponding healthy cells. In contrast, ERα and GPER gene expression was significantly decreased in estrogen-treated lipedema spheroids. CYP19A1 and LIPE gene expressions were significantly increased in estrogen-treated healthy ASCs and spheroids, respectively, while estrogen upregulated the expression of PPAR-ϒ2 and ERα in estrogen-treated lipedema-differentiated adipocytes and spheroids. These results indicate that estrogen may play a role in adipose tissue dysregulation in lipedema.
-
BACKGROUND: Lipedema is a chronic inflammatory subcutaneous adipose-rich connective tissue disease affecting millions of women worldwide. Disproportionate fat accumulation on the extremities characterized by heaviness, tenderness, and swelling can affect function, mobility, and quality of life. Treatments include conservative measures and lipedema reduction surgery (LRS). Here, we report lipedema comorbidities and surgical techniques, outcomes measures, and complications after LRS. METHODS: This is a single outpatient clinic retrospective chart review case series of comorbidities and complications in 189 women with lipedema. Bioelectrical impedance analyses, knee kinematics, gait, physical examinations, Patient-Reported Outcomes Measurement Information System, and RAND Short Form-36 questionnaires collected before and after LRS were analyzed for 66 of the 189 women. Hemoglobin levels were measured by transdermal hemoglobin monitor (Masimo noninvasive hemoglobin monitoring; Irvine, Calif.). RESULTS: Common comorbidities in 189 women were hypermobile joints (50.5%), spider/varicose veins (48.6/24.5%), arthritis (29.1%), and hypothyroidism (25.9%). The most common complication in 5.5% of these women after LRS was lightheadedness with a 2-g reduction or more in hemoglobin. After conservative measures and LRS in 66 women, significant improvements (P ≤ 0.0009) were found for: (1) knee flexion (10 degrees); (2) gait; (3) Patient-Reported Outcomes Measurement Information System T-score (16%); (4) mobility questions: gait velocity, rising from a chair, stair ascent; (5) RAND Short Form-36 scores: physical functioning, energy/fatigue, emotional well-being, social function, general health; (6) and Bioelectrical impedance analyses total and segmental body fat mass. CONCLUSION: LRS provided significant improvements to women with lipedema using direct physical measurements and validated outcome measures, comparable to those seen after total knee replacement.
-
The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-γ and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.
-
Objective Lipedema is an inflammatory subcutaneous adipose tissue disease that develops in women and may progress to lipolymphedema, a condition similar to lymphedema, in which lymphatic dysfunction results in irresolvable edema. Because it has been shown that dilated lymphatic vessels, impaired pumping, and dermal backflow are associated with presymptomatic, cancer-acquired lymphedema, this study sought to understand whether these abnormal lymphatic characteristics also characterize early stages of lipedema prior to lipolymphedema development. Methods In a pilot study of 20 individuals with Stage I or II lipedema who had not progressed to lipolymphedema, lymphatic vessel anatomy and function in upper and lower extremities were assessed by near-infrared fluorescence lymphatic imaging and compared with that of a control population of similar age and BMI. Results These studies showed that, although lower extremity lymphatic vessels were dilated and showed intravascular pooling, the propulsion rates significantly exceeded those of control individuals. Upper extremity lymphatics of individuals with lipedema were unremarkable. In contrast to individuals with lymphedema, individuals with Stage I and II lipedema did not exhibit dermal backflow. Conclusions These results suggest that, despite the confusion in the diagnoses between lymphedema and lipedema, their etiologies differ, with lipedema associated with lymphatic vessel dilation but not lymphatic dysfunction.
-
Lipedema is a connective tissue disorder characterized by increased dilated blood vessels (angiogenesis), inflammation, and fibrosis of the subcutaneous adipose tissue. This project aims to gain insights into the angiogenic processes in lipedema using human umbilical vein endothelial cells (HUVECs) as an in vitro model. HUVECs were cultured in conditioned media (CM) collected from healthy (non-lipedema, AQH) and lipedema adipocytes (AQL). The impacts on the expression levels of multiple endothelial and angiogenic markers [CD31, von Willebrand Factor (vWF), angiopoietin 2 (ANG2), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMPs), NOTCH and its ligands] in HUVECs were investigated. The data demonstrate an increased expression of CD31 and ANG2 at both the gene and protein levels in HUVECs treated with AQL CM in 2D monolayer and 3D cultures compared to untreated cells. Furthermore, the expression of the vWF, NOTCH 4, and DELTA-4 genes decreased. In contrast, increased VEGF, MMP9, and HGF gene expression was detected in HUVECs treated with AQL CM cultured in a 2D monolayer. In addition, the results of a tube formation assay indicate that the number of formed tubes increased in lipedema-treated HUVECs cultured in a 2D monolayer. Together, the data indicate that lipedema adipocyte-CM promotes angiogenesis through paracrine-driven mechanisms.
-
Background: Lipedema is a loose connective tissue disease affecting the limbs of women, that is difficult to lose by diet, exercise, or bariatric surgery. Publications from Europe demonstrate that lipedema reduction surgery improves quality of life for women with lipedema. There are no comparable studies in the United States (USA). The aim of this study was to collect data from women with lipedema in the USA who have undergone lipedema reduction surgery in the USA to determine if quality of life, pain, and other measures improved after lipedema reduction surgery. Methods: Subjects were recruited and consented online for a 166-item questionnaire in REDCap. In total, 148 women answered the questionnaire after undergoing lipedema reduction surgery in the USA. Significance set at P < 0.05 was determined by ANOVA, Tukey’s multiple comparison test, or paired t-test. Results: Quality of life improved in 84% and pain improved in 86% of patients. Ambulation improved most in lipedema Stage 3 (96%). Weight loss occurred in all stages by 3 months after surgery. Complications included growth of loose connective tissue within and outside treated areas, tissue fibrosis, anemia, blood clots, and lymphedema. Conclusions: Women with lipedema noticed significant benefits after lipedema reduction surgery in the USA. Prospective studies are needed to assess benefits and complications after lipedema reduction surgery in the USA.
-
Lipedema is a common disorder characterized by excessive deposition of subcutaneous adipose tissue (SAT) in the legs, hips, and buttocks, mainly occurring in adult women. Although it appears to be heritable, no specific genes have yet been identified. To identify potential genetic risk factors for lipedema, we used bioelectrical impedance analysis and anthropometric data from the UK Biobank to identify women with and without a lipedema phenotype. Specifically, we identified women with both a high percentage of fat in the lower limbs and a relatively small waist, adjusting for hip circumference. We performed a genome-wide association study (GWAS) for this phenotype, and performed multiple sensitivity GWAS. In an independent case/control study of lipedema based on strict clinical criteria, we attempted to replicate our top hits. We identified 18 significant loci (p < 5 × 10−9), several of which have previously been identified in GWAS of waist-to-hip ratio with larger effects in women. Two loci (VEGFA and GRB14-COBLL1) were significantly associated with lipedema in the independent replication study. Follow-up analyses suggest an enrichment of genes expressed in blood vessels and adipose tissue, among other tissues. Our findings provide a starting point towards better understanding the genetic and physiological basis of lipedema.
-
Lipedema is a disease with abnormally increased adipose tissue deposition and distribution. Pain sensations have been described in the clinical evaluation of lipedema, but its etiology remains poorly understood. We hypothesized that pain sensitivity measurements and ex vivo quantitation of neuronal cell body distribution in the skin would be lipedema stage-dependent, and could, thus, serve to objectively characterize neuropathic pain in lipedema. The pain was assessed by questionnaire and peripheral cutaneous mechanical sensitization (von-Frey) in lipedema (n = 27) and control (n = 23) consenting female volunteers. Dermal biopsies from (n = 11) Stages 1–3 lipedema and control (n = 10) participants were characterized for neuronal cell body and nociceptive neuropeptide calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF) distribution. Stage 2 or 3 lipedema participants responded positively to von Frey sensitization in the calf and thigh, and Stage 3 participants also responded in the arm. Lipedema abdominal skin displayed reduced Tuj-1+ neuronal cell body density, compared to healthy controls, while CGRP and NGF was significantly elevated in Stage 3 lipedema tissues. Together, dermal neuronal cell body loss is consistent with hyper-sensitization in patients with lipedema. Further study of neuropathic pain in lipedema may elucidate underlying disease mechanisms and inform lipedema clinical management and treatment impact.
-
Lipedema is an often underdiagnosed chronic disorder that affects subcutaneous adipose tissue almost exclusively in women, which leads to disproportionate fat accumulation in the lower and upper body extremities. Common comorbidities include anxiety, depression, and pain. The correlation between mood disorder and subcutaneous fat deposition suggests the involvement of steroids metabolism and neurohormones signaling, however no clear association has been established so far. In this study, we report on a family with three patients affected by sex-limited autosomal dominant nonsyndromic lipedema. They had been screened by whole exome sequencing (WES) which led to the discovery of a missense variant p.(Leu213Gln) in AKR1C1, the gene encoding for an aldo-keto reductase catalyzing the reduction of progesterone to its inactive form, 20-α-hydroxyprogesterone. Comparative molecular dynamics simulations of the wild-type vs. variant enzyme, corroborated by a thorough structural and functional bioinformatic analysis, suggest a partial loss-of-function of the variant. This would result in a slower and less efficient reduction of progesterone to hydroxyprogesterone and an increased subcutaneous fat deposition in variant carriers. Overall, our results suggest that AKR1C1 is the first candidate gene associated with nonsyndromic lipedema.
-
Lipedema is a chronic disease that mostly manifests in females as the abnormal distribution of subcutaneous adipose connective tissue, usually coupled with bruising, pain, and edema. Lipedema molecular pathophysiology is currently not clear, but several studies suggest that genetics and hormonal imbalance participate in lipedema pathogenesis. Women with lipedema present in some cases with elevated body mass index, and the appearance of obesity in addition to lipedema, where the obesity can cause serious health issues as in lipedema-free individuals with obesity, such as diabetes and cardiovascular disorders. Unlike obesity, lipedema tissue does not respond well to diet or physical exercise alone. Therefore, in this review we discuss the effect of various dietary supplements that, along with diet and physical exercise, cause fat burning and weight loss, and which could potentially be important in the treatment of lipedema. Indeed, an effective fat burner should convert stored fats into energy, mobilize and break down triglycerides in adipocytes, boost metabolism and inhibit lipogenesis. Common ingredients of fat burning supplements are green tea, caffeine, chromium, carnitine, and conjugated linoleic acid. The use of fat burners could act synergistically with a healthy diet and physical exercise for decreasing adipose tissue deposition in patients with lipedema and resolve related health issues. The effects of fat burners in human studies are sometimes contradictory, and further studies should test their effectiveness in treating lipedema.
-
BACKGROUND: National survey data exploring the patient experience with lipedema are lacking. METHODS: We conducted national surveys from 2016 to 2022 of women with lipedema as well as female controls. Surveys collected information on symptomatology, pain, and therapies. We performed logistic regression comparing symptoms among those with lipedema versus controls adjusting for age and BMI. RESULTS: A total of 707 women with lipedema and 216 controls completed the surveys. Those with lipedema had a mean age of 48.6 years and mean BMI of 40.9 kg/m2. Lipedema symptom onset occurred frequently at puberty (48.0%) or pregnancy (41.2%). Compared to controls, women with lipedema were more likely to report leg swelling in heat (odds ratio [OR], 66.82; 95% CI, 33.04-135.12; p < 0.0001), easy bruising (OR, 26.23; 95% CI, 15.58-44.17; p < 0.0001), altered gait (OR, 15.54; 95% CI, 7.58-31.96; p < 0.0001), flu-like symptoms (OR, 12.99; 95% CI, 4.27-39.49; p < 0.0001), joint hypermobility (OR, 12.88; 95% CI, 6.68-24.81; p < 0.0001), cool skin (OR, 12.21; 95% CI, 5.20-28.69; p < 0.0001), varicose veins (OR, 11.29; 95% CI, 6.71-18.99; p < 0.0001), and fatigue (OR, 9.59; 95% CI, 6.10-15.09; p < 0.0001). Additionally, 70.3% had upper arm involvement, 21.2% reported foot swelling, and 16.6% reported foot pain. Most (52.2%) reported no symptom improvement with diet or exercise. Common therapies used included compression therapy (45.0%), gastric bypass (15.7%), and lower-extremity liposuction (14.0%). CONCLUSION: In a large, national, symptom survey, women with lipedema reported excess pain, swelling, and fat in the legs along with numerous symptoms beyond those classically described. Symptom responses to common therapies remain understudied.
-
Lipedema is a disabling disease characterized by symmetric enlargement of the lower and/or upper limbs due to deposits of subcutaneous fat, that is easily misdiagnosed. Lipedema can be primary or syndromic, and can be the main feature of phenotypically overlapping disorders. The aim of this study was to design a next-generation sequencing (NGS) panel to help in the diagnosis of lipedema by identifying genes specific for lipedema but also genes for overlapping diseases, and targets for tailored treatments. We developed an NGS gene panel consisting of 305 genes potentially associated with lipedema and putative overlapping diseases relevant to lipedema. The genomes of 162 Italian and American patients with lipedema were sequenced. Twenty-one deleterious variants, according to 3 out of 5 predictors, were detected in PLIN1, LIPE, ALDH18A1, PPARG, GHR, INSR, RYR1, NPC1, POMC, NR0B2, GCKR, PPARA in 17 patients. This extended NGS-based approach has identified a number of gene variants that may be important in the diagnosis of lipedema, that may affect the phenotypic presentation of lipedema or that may cause disorders that could be confused with lipedema. This tool may be important for the diagnosis and treatment of people with pathologic subcutaneous fat tissue accumulation.
Explore
Topic
- Genetics (3)
- Guidelines and Consensus (2)
- LF Funded (7)
- Lipedema (23)
- Open Access (16)
- Original studies and data (14)
- Patient journey (1)
- Personal management (diet, excercise, nutrition) (1)
- Review (3)
- Therapeutics (1)
Resource type
- Document (1)
- Journal Article (22)
Publication year
Publication
- Open Access (16)