Your search

Topic

Results 725 resources

  • Lipedema is an often underdiagnosed chronic disorder that affects subcutaneous adipose tissue almost exclusively in women, which leads to disproportionate fat accumulation in the lower and upper body extremities. Common comorbidities include anxiety, depression, and pain. The correlation between mood disorder and subcutaneous fat deposition suggests the involvement of steroids metabolism and neurohormones signaling, however no clear association has been established so far. In this study, we report on a family with three patients affected by sex-limited autosomal dominant nonsyndromic lipedema. They had been screened by whole exome sequencing (WES) which led to the discovery of a missense variant p.(Leu213Gln) in AKR1C1, the gene encoding for an aldo-keto reductase catalyzing the reduction of progesterone to its inactive form, 20-α-hydroxyprogesterone. Comparative molecular dynamics simulations of the wild-type vs. variant enzyme, corroborated by a thorough structural and functional bioinformatic analysis, suggest a partial loss-of-function of the variant. This would result in a slower and less efficient reduction of progesterone to hydroxyprogesterone and an increased subcutaneous fat deposition in variant carriers. Overall, our results suggest that AKR1C1 is the first candidate gene associated with nonsyndromic lipedema.

  • Lipoedema is associated with widespread adipose tissue expansion, particularly in the proximal extremities. The mechanisms that drive the development of lipoedema are unclear. In this Perspective article, we propose a new model for the pathophysiology of lipoedema. We suggest that lipoedema is an oestrogen-dependent disorder of adipose tissue, which is triggered by a dysfunction of caveolin 1 (CAV1) and subsequent uncoupling of feedback mechanisms between CAV1, the matrix metalloproteinase MMP14 and oestrogen receptors. In addition, reduced CAV1 activity also leads to the activation of ERα and impaired regulation of the lymphatic system through the transcription factor prospero homeobox 1 (PROX1). The resulting upregulation of these factors could effectively explain the main known features of lipoedema, such as adipose hypertrophy, dysfunction of blood and lymphatic vessels, the overall oestrogen dependence and the associated sexual dimorphism, and the mechanical compliance of adipose tissue.

  • Liposuction is one of the most common procedures undertaken in plastic surgery with a steadily increasing trend over the years. Although usually performed as an aesthetic procedure for body contouring, it can also be utilized in specific patient groups for disease symptom reduction. One such disease entity is lipedema. The goal of this video to present the authors' technique in the surgical treatment of lipedema, and to offer the viewer a better understanding of the differences between an aesthetic liposuction and a functional liposuction as performed on a lipedema patient. Between July 2009 and July 2019, 106 lipedema patients have been treated in the authors' specialized lipedema clinic, with a total of 298 liposuction procedures and a median follow-up of 20 months. The mean amount of lipoaspirate was 6354.73 ml (± 2796.72 ml). The patients reported a significant reduction in lipedema-associated complaints and improvement in quality of life. The need for conservative therapy was significantly reduced. No serious complications were reported. The authors also present before and after photographs of three patients. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  • The COVID-19 pandemic poses a challenge to the management of non-COVID pathologies such as lymphatic diseases and lipoedema. The use of telemedicine can prevent the spread of the disease. A system is needed to help determine the clinical priority and selection of face-to-face or telemedicine options for each patient and how to carry them out during the pandemic. The Spanish Lymphology Group has drafted a consensus document with recommendations based on the literature and clinical experience, as clinical practice guidelines for the management of lymphatic abnormalities and lipoedema during the COVID-19 pandemic. These recommendations must be adapted to the characteristics of each patient, the local conditions of the centres, and the decisions of health care professionals. The document contains minimum criteria, subject to modifications according to the evolution of the pandemic, scientific knowledge and instructions from health authorities.

  • BACKGROUND: The aim was to quantify and to compare the associations between longitudinal changes in pain and depression in different chronic pain conditions. METHODS: Data were retrieved from 6 observational cohort studies. From baseline to the 6-month follow-up, the score changes on the Short Form (36) Health Survey (SF-36) bodily pain (pain) and the SF-36 mental health (depression) scales (0=worst, 100=best) were quantified, using partial correlations obtained by multiple regression. Adjustment was performed by age, living alone/with partner, education level, number of comorbidities, baseline pain and baseline depression. RESULTS: Stronger associations were found between changes in levels of pain and depression for neck pain after whiplash (n = 103, mean baseline pain=21.4, mean baseline depression=52.5, adjusted correlation r = 0.515), knee osteoarthritis (n = 177, 25.4, 64.2, r = 0.502), low back pain (n = 134, 19.0, 49.4, r = 0.495), and fibromyalgia (n = 125, 16.8, 43.2, r = 0.467) than for lower limb lipedema (n = 68, 40.2, 62.6, r = 0.452) and shoulder arthroplasty (n = 153, 35.0, 76.4, r = 0.292). Those correlations were somewhat correlated to baseline pain (rank r=-0.429) and baseline depression (rank r=-0.314). LIMITATIONS: The construct of the full range of depressive symptoms is not explicitly covered by the SF-36. CONCLUSIONS: Moderate associations between changes in pain and depression levels were demonstrated across 5 of 6 different chronic pain conditions. The worse the pain and depression scores at baseline, the stronger those associations tended to be. Both findings indicate a certain dose-response relationship - an important characteristic of causal interference. Relieving pain by treatment may lead to the relief of depression and vice versa.

  • PURPOSE: The aim of this narrative review of the literature was to evaluate and summarize the current literature regarding the effect of lipedema on health-related quality of life (HRQOL) and psychological status. METHODS: The authors collected articles through a search into Medline, Embase, Scopus, Web of Science, Physiotherapy Evidence Database (PEDro), and the Cochrane Review. Search terms used included "Lipoedema," "Lipedema," "psychological status," "Quality of life," "Health related quality of life," and "HRQOL." RESULTS: A total of four observational studies were evaluated. The included studies were moderate-quality according to the Newcastle-Ottawa Scale. Three of the included studies demonstrated deterioration of HRQOL and psychological status in patients with lipedema. These studies also identify that pain and tenderness are a more common and dominant characteristic. CONCLUSION: Future studies should establish a specific approach to treat and manage lipedema symptoms. Based on this narrative review of the literature findings, we recommended for the health care provider to pay more attention to HRQOL and psychological status. Moreover, validated and adapted measures of HRQOL and psychological status for patients with lipedema are required. LEVEL OF EVIDENCE: Level V, narrative review.

  • BACKGROUND: Literature on the validity of outcome measurement in lymphedema and lipedema is very sparse. This study aimed to examine the convergent, divergent and discriminant validity of a set of 5 instruments in both conditions. METHODS: Cross-sectional outcome was measured by the generic Short Form 36 (SF-36), the lymphedema-specific Freiburg Quality of Life Assessment for lymphatic disorders, Short Version (FLQA-lk), the knee-specific Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), the Symptom Checklist-90-revised (SCL-90R), and the Six-Minute Walk Test (6 MWT). Construct convergent/divergent validity was quantified by bivariate correlations and multivariate factor analysis, and discriminant validity by standardized mean differences (SMDs). RESULTS: Health was consistently better in lymphedema (n = 107) than in lipedema (n = 96). The highest construct convergence was found for physical health between the SF-36 and KOS-ADL (bivariate correlations up to 0.78, factor loads up to 0.85, explained variance up to 56.8%). The second most important factor was mental health (bivariate correlations up to 0.79, factor loads up to 0.86, explained variance up to 13.3%). Discriminant validity was greatest for the FLQA-lk Physical complaints (adjusted SMD = 0.93) followed by the SF-36 Bodily pain (adjusted SMD = 0.83), KOS-ADL Function (adjusted SMD = 0.47) and SF-36 Vitality (adjusted SMD = 0.39). CONCLUSIONS: All five instruments have specific strengths and can be implemented according to the scope and aim of the outcome examination. A minimum measurement set should comprise: the SF-36 Bodily pain, SF-36 Vitality, FLQA-lk Physical complaints, FLQA-lk Social life, FLQA-lk Emotional well-being, FLQA-lk Health state, KOS-ADL Symptoms, KOS-ADL Function, and the SCL-90R Interpersonal sensitivity.

  • Lipedema is a chronic adipose tissue disorder characterized by the disproportional subcutaneous deposition of fat and is commonly misdiagnosed as lymphedema or obesity. The molecular determinants of the lipedema remain largely unknown and only speculations exist regarding the lymphatic system involvement. The aim of the present study is to characterize the lymphatic vascular involvement in established lipedema. The histological and molecular characterization was conducted on anatomically-matched skin and fat biopsies as well as serum samples from eleven lipedema and ten BMI-matched healthy patients. Increased systemic levels of vascular endothelial growth factor (VEGF)-C (P = 0.02) were identified in the serum of lipedema patients. Surprisingly, despite the increased VEGF-C levels no morphological changes of the lymphatic vessels were observed. Importantly, expression analysis of lymphatic and blood vessel-related genes revealed a marked downregulation of Tie2 (P < 0.0001) and FLT4 (VEGFR-3) (P = 0.02) consistent with an increased macrophage infiltration (P = 0.009), without changes in the expression of other lymphatic markers. Interestingly, a distinct local cytokine milieu, with decreased VEGF-A (P = 0.04) and VEGF-D (P = 0.02) expression was identified. No apparent lymphatic anomaly underlies lipedema, providing evidence for the different disease nature in comparison to lymphedema. The changes in the lymphatic-related cytokine milieu might be related to a modified vascular permeability developed secondarily to lipedema progression.

  • OBJECTIVE: Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS: Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS: No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS: Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.

  • BackgroundLong-term results following liposuction in patients with lipedema were available only for an average period of 8?years.ObjectiveTo find out whether the improvements persist for a further 4?years.MethodsIn 60 patients with lipedema a single-centre study with a mail questionnaire ? often in combination with clinical controls ? was performed after an average period of 12?years following liposuction(s). All patients in this group had already been surveyed 4 and 8?years after surgery.ResultsCompared with the earlier results improvement persisted with regard to spontaneous pain, sensitivity to pressure, edema, bruising and restriction of movement; similar outcomes were observed for self-assessment of cosmetic impairment, reduction in quality of life and overall impairment. While in the period from 4 to 8?years postoperatively complaints slightly increased, this was not the case for the period 8 to 12?years postoperatively. In addition a similar reduction of conservative treatment (decongestive therapy, compression garments) was observed as after 4 and 8?years postoperatively. Compared with the body weight before liposuction, 55% of the patients showed a reduction of 6.2?kg on average and 43.3% had a weight increase with an average of 7.9?kg.ConclusionThe results show, that the positive effects of liposuction last 12?years postoperatively without relevant worsening. They imply that liposuction for lipedema leads to a permanent reduction of symptom severity and need for conservative therapy.

  • BACKGROUND: Lipedema is often unrecognized or misdiagnosed; despite an estimated prevalence of 10% in the overall female population, its cause is still unknown. There is increasing awareness of this condition, but its differential diagnosis can still be challenging. In this article, we summarize current hypotheses on its pathogenesis and the recommendations of current guidelines for its diagnosis and treatment. METHODS: This review is based on publications about lipedema that were retrieved by a selective search in the MEDLINE, Web of Science, and Cochrane Library databases. RESULTS: The pathophysiology of lipedema remains unclear. The putative causes that have been proposed include altered adipogenesis, microangiopathy, and disturbed lymphatic microcirculation. No specific biomarker has yet been found, and the diagnosis is currently made on clinical grounds alone. Ancillary tests are used only to rule out competing diagnoses. The state of the evidence on treatment is poor. Treatment generally consists of complex decongestive therapy. In observational studies, liposuction for the permanent reduction of adipose tissue has been found to relieve symptoms to a significant extent, with only rare complications. The statutory healthinsurance carriers in Germany do not yet regularly cover the cost of the procedure; studies of high methodological quality will be needed before this is the case. CONCLUSION: The diagnosis of lipedema remains a challenge because of the hetero - geneous presentation of the condition and the current lack of objective measuring instruments to characterize it. This review provides a guide to its diagnosis and treatment in an interdisciplinary setting. Research in this area should focus on the elucidation of the pathophysiology of lipedema and the development of a specific biomarker for it.

  • Lipedema is a fat disorder that is often misdiagnosed. It was first identified at the Mayo Clinic in 1940, but medical schools do not include it in their curriculum and is therefore poorly understood. It presents as disproportionate and symmetrical accumulations of fat (bilateral), which is often accompanied by orthostatic edema. Early diagnosis and treatment are crucial, as the disease is progressive and can lead to immobility as well as a significant decrease in the quality of life. Lipedema differs from obesity because it does not respond to diet and exercise. This article gives you a glimpse into what lipedema is about and will help you identify some differences between lipedema and lymphedema. It will also help you identify which surgical procedures have been successful in treating the disease.

  • OBJECTIVE: The aim of this study is to compare tissue sodium and fat content in the upper and lower extremities of participants with lipedema versus controls using magnetic resonance imaging (MRI). METHODS: MRI was performed at 3.0 T in females with lipedema (n = 15, age = 43.2 ± 10.0 years, BMI = 30.3 ± 4.4 kg/m2 ) and controls without lipedema (n = 14, age = 42.8 ± 13.2 years, BMI = 28.8 ± 4.4 kg/m2 ). Participants were assessed for pain and disease stage. Sodium MRI was performed in the forearm and calf to quantify regional tissue sodium content (TSC, mmol/L). Chemical-shift-encoded water-fat MRI was performed in identical regions for measurement of fat/water (ratio). RESULTS: In the calf, skin TSC (16.3 ± 2.6 vs. 14.4 ± 2.2 mmol/L, P = 0.04), muscle TSC (20.3 ± 3.0 vs. 18.3 ± 1.7 mmol/L, P = 0.03), and fat/water (1.03 ± 0.37 vs. 0.56 ± 0.21 ratio, P < 0.001) were significantly higher in participants with lipedema versus control participants. In the forearm, skin TSC (13.4 ± 3.3 vs. 12.0 ± 2.3 mmol/L, P = 0.2, Cohen's d = 0.50) and fat/water (0.65 ± 0.24 vs. 0.48 ± 0.24 ratio, P = 0.07, Cohen's d = 0.68) demonstrated moderate effect sizes in participants with lipedema versus control participants. Calf skin TSC was significantly correlated with pain (Spearman's rho = 0.55, P = 0.03) and disease stage (Spearman's rho = 0.82, P < 0.001) among participants with lipedema. CONCLUSIONS: MRI-measured tissue sodium and fat content are significantly higher in the lower extremities, but not upper extremities, of patients with lipedema compared with BMI-matched controls.

  • BACKGROUND: Lymphatic insufficiency might play a significant role in the pathophysiology of lipoedema. Liposuction is up to now the best treatment. As liposuction is invasive, the technique could destruct parts of the lymphatic system and by this aggravate the lymphatic component and/or induce lymphoedema. We investigated the function of the lymphatic system in lipoedema patients before and after tumescent liposuction and thus whether tumescent liposuction can be regarded as a safe treatment. METHODS: Lymphoscintigraphy was performed to quantify the lymph outflow of 117 lipoedema patients. Mean clearance percentages of radioactive protein loaded after 1 min with respect to the total injected dose and corrected for decay of the radiopharmaceutical in the subcutaneous lymphatics were used as functional quantitative parameters as well as the clearance percentages and inguinal uptake 2 h post injection. The results of lymphatic function in lipoedema patients were compared with values obtained from normal healthy volunteers. We also compared 50 lymphoscintigraphies out of the previous 117 lipoedema patients before and six months after tumescent liposuction. RESULTS: In 117 lipoedema patients clearance 2 h post injection in the right and left foot was disturbed in 79.5 and 87.2% respectively. The inguinal uptake 2 h post injection in the right and left groin was disturbed in 60.3 and 64.7% respectively. In 50 lipoedema patients mean clearance and inguinal uptake after tumescent liposuction were slightly improved, 0.01 (p = 0.37) versus 0.02 (p = 0.02), respectively. This is statistically not relevant in clearance. CONCLUSION: Lipoedema legs have a delayed lymph transport. Tumescent liposuction does not diminish the lymphatic function in lipoedema patients, thus tumescent liposuction can be regarded as a safe treatment.

  • Lipedema is a chronic, progressive disease of adipose tissue with lack of consistent diagnostic criteria. The aim of this study was a thorough comparative characterization of extracellular microRNAs (miRNAs) from the stromal vascular fraction (SVF) of healthy and lipedema adipose tissue. For this, we analyzed 187 extracellular miRNAs in concentrated conditioned medium (cCM) and specifically in small extracellular vesicles (sEVs) enriched thereof by size exclusion chromatography. No significant difference in median particle size and concentration was observed between sEV fractions in healthy and lipedema. We found the majority of miRNAs located predominantly in cCM compared to sEV enriched fraction. Surprisingly, hierarchical clustering of the most variant miRNAs showed that only sEVmiRNA profiles - but not cCMmiRNAs - were impacted by lipedema. Seven sEVmiRNAs (miR-16-5p, miR-29a-3p, miR-24-3p, miR-454-p, miR-144-5p, miR-130a-3p, let-7c-5p) were differently regulated in lipedema and healthy individuals, whereas only one cCMmiRNA (miR-188-5p) was significantly downregulated in lipedema. Comparing SVF from healthy and lipedema patients, we identified sEVs as the lipedema relevant miRNA fraction. This study contributes to identify the potential role of SVF secreted miRNAs in lipedema.

  • BACKGROUND: Selenium is a trace element, which is utilized by the human body in selenoproteins. Their main function is to reduce oxidative stress, which plays an important role in lymphedema and lipedema. In addition, selenium deficiency is associated with an impaired immune function. The aim of this study was to determine the prevalence of selenium deficiency in these conditions, and if it is associated with disease severity and an associated medical condition such as obesity. METHODS: This cross-sectional study is an anonymized, retrospective analysis of clinical data that was routinely recorded in a clinic specialized in lymphology. The data was comprised from 791 patients during 2012-2019, in which the selenium status was determined as part of their treatment. RESULTS: Selenium deficiency proved common in patients with lymphedema, lipedema, and lipo-lymphedema affecting 47.5% of the study population. Selenium levels were significantly lower in patients with obesity-related lymphedema compared to patients with cancer-related lymphedema (96.6 ± 18.0 μg/L vs. 105.1 ± 20.2 μg/L; p < 0.0001). Obesity was a risk factor for selenium deficiency in lymphedema (OR 2.19; 95% CI 1.49 to 3.21), but not in lipedema. CONCLUSIONS: In countries with low selenium supply, selenium deficiency is common, especially in lymphedema patients. Therefore, it would be sensible to check the selenium status in lymphedema patients, especially those with obesity, as the infection risk of lymphedema is already increased.

  • The purpose is to determine whether surgical therapy of lipedema (stage I, II or III) using Liposuction the pain in the legs compared to the use of complex decongestive therapy (CDT) relevant improved.

  • Lipoedema, an adipose tissue disorder, is a poorly visible, often unrecognised condition. To foster a greater understanding of the significant and debilitating impacts faced by women living with lipoedema, the charity Lipoedema UK conducted four focus group interviews, the findings of which were published in a series of reports under the umbrella title 'Women in dire need'. The reports identified the substantial and numerous negative effects of lipoedema on the women's everyday lives, including the patients' experiences with compression garments, the effects of liposuction surgery (many of which were not positive), the everyday impacts ranging from pain and reduced mobility to poor self-esteem and working prospects, and the considerable challenges faced by women with late-stage lipoedema which can render them immobile.

  • Lipoedema is an incurable chronic disease causing limb deformity, painful skin and excessive ecchymosis. Compression garments are frequently recommended to manage symptoms, but the existing products are not designed specifically for lipoedema, and are for other medical conditions. A structured questionnaire was prepared in Online Surveys in October 2018 to investigate lipoedema symptoms and the use of compression garments to manage them. Some 279 people with lipoedema completed the survey; 70% wore compression garments in all four compression classes, of which class 2 was most common (58% of wearers). The top three reasons for wearing compression garments were to feel supported (73%), reduce lipoedema pain (67%) and improve mobility (54%). Most people with lipoedema who wore compression garments found compression helpful in managing their symptoms, but overall satisfaction was low. Problems with existing compression garments were so severe in some cases that the garments were not worn at all or used less often. The information collected in this survey might be useful for the design and development of compression garments specifically for lipoedema.

Last update from database: 9/27/24, 7:48 AM (UTC)