Your search

Results 48 resources

  • Lipedema is an underdiagnosed painful adipose tissue disorder that occurs almost exclusively in women, with onset manifesting at puberty or at times of hormonal change. Unlike many fat disorders, diet and exercise have little to no impact on the prevention or progression of this disease. Estrogens control the distribution of body fat and food intake, regulate leptin expression, increase insulin sensitivity, and reduce inflammation through signaling pathways mediated by its receptors, estrogen receptor alpha (ERα) and ERβ. This review will focus on understanding the role of estrogen in the pathogenesis of the disease and envisage potential hormonal therapy for lipedema patients.

  • PURPOSE OF REVIEW: Williams syndrome is a multisystem disorder caused by a microdeletion on chromosome 7q. Throughout infancy, childhood, and adulthood, abnormalities in body composition and in multiple endocrine axes may arise for individuals with Williams syndrome. This review describes the current literature regarding growth, body composition, and endocrine issues in Williams syndrome with recommendations for surveillance and management by the endocrinologist, geneticist, or primary care physician. RECENT FINDINGS: In addition to known abnormalities in stature, calcium metabolism, and thyroid function, individuals with Williams syndrome are increasingly recognized to have low bone mineral density, increased body fat, and decreased muscle mass. Furthermore, recent literature identifies a high prevalence of diabetes and obesity starting in adolescence, and, less commonly, a lipedema phenotype in both male and female individuals. Understanding of the mechanisms by which haploinsufficiency of genes in the Williams syndrome-deleted region contributes to the multisystem phenotype of Williams syndrome continues to evolve. SUMMARY: Multiple abnormalities in growth, body composition, and endocrine axes may manifest in individuals with Williams syndrome. Individuals with Williams syndrome should have routine surveillance for these issues in either the primary care setting or by an endocrinologist or geneticist.

  • Lipedema is an adipose tissue disorder characterized by the disproportionate increase of subcutaneous fat tissue in the lower and/or upper extremities. The underlying pathomechanism remains unclear and no molecular biomarkers to distinguish the disease exist, leading to a large number of undiagnosed and misdiagnosed patients. To unravel the distinct molecular characteristic of lipedema we performed lipidomic analysis of the adipose tissue and serum of lipedema versus anatomically- and body mass index (BMI)-matched control patients. Both tissue groups showed no significant changes regarding lipid composition. As hyperplastic adipose tissue represents low-grade inflammation, the potential systemic effects on circulating cytokines were evaluated in lipedema and control patients using the Multiplex immunoassay system. Interestingly, increased systemic levels of interleukin 11 (p = 0.03), interleukin 28A (p = 0.04) and interleukin 29 (p = 0.04) were observed. As cytokines can influence metabolic activity, the metabolic phenotype of the stromal vascular fraction was examined, revealing significantly increased mitochondrial respiration in lipedema. In conclusion, despite sharing a comparable lipid profile with healthy adipose tissue, lipedema is characterized by a distinct systemic cytokine profile and metabolic activity of the stromal vascular fraction.

  • Background: Fluid in lymphedema tissue appears histologically as spaces around vessels and between dermal skin fibers. Lipedema is a painful disease of excess loose connective tissue (fat) in limbs, almost exclusively of women, that worsens by stage, increasing lymphedema risk. Many women with lipedema have hypermobile joints suggesting a connective tissue disorder that may affect vessel structure and compliance of tissue resulting in excess fluid entering the interstitial space. It is unclear if excess fluid is present in lipedema tissue. The purpose of this study is to determine if fluid accumulates around vessels and between skin fibers in the thigh tissue of women with lipedema. Methods: Skin biopsies from the thigh and abdomen from 30 controls and 80 women with lipedema were evaluated for dermal spaces and abnormal vessel phenotype (AVP): (1) rounded endothelial cells; (2) perivascular spaces; and (3) perivascular immune cell infiltrate. Women matched for body mass index (BMI) and age were considered controls if they did not have lipedema on clinical examination. Data were analyzed by analysis of variance (ANOVA) or unpaired t-tests using GraphPad Prism Software 7. p < 0.05 was considered significant. Results: Lipedema tissue mass increases beginning with Stage 1 up to Stage 3, with lipedema fat accumulating more on the limbs than the abdomen. AVP was higher in lipedema thigh (p = 0.003) but not abdomen skin compared with controls. AVP was higher in thigh skin of women with Stage 1 (p = 0.001) and Stage 2 (p = 0.03) but not Stage 3 lipedema versus controls. AVP also was greater in the thigh skin of women with lipedema without obesity versus lipedema with obesity (p < 0.0001). Dermal space was increased in lipedema thigh (p = 0.0003) but not abdomen versus controls. Dermal spaces were also increased in women with lipedema Stage 3 (p < 0.0001) and Stage 2 (p = 0.0007) compared with controls. Conclusion: Excess interstitial fluid in lipedema tissue may originate from dysfunctional blood vessels (microangiopathy). Increased compliance of connective tissue in higher stages of lipedema may allow fluid to disperse into the interstitial space, including between skin dermal fibers. Lipedema may be an early form of lymphedema. ClinicalTrials.gov: NCT02838277.

  • BACKGROUND: Lipedema is a common adipose tissue disorder affecting women, characterized by a symmetric subcutaneous adipose tissue deposition, particularly of the lower extremities. Lipedema is usually underdiagnosed, thus remaining an undertreated disease. Importantly, no histopathologic or molecular hallmarks exist to clearly diagnose the disease, which is often misinterpreted as obesity or lymphedema. MATERIALS AND METHODS: The aim of the present study is to characterize in detail morphologic and molecular alterations in the adipose tissue composition of lipedema patients compared with healthy controls. Detailed histopathologic and molecular characterization was performed using lipid and cytokine quantification as well as gene expression arrays. The analysis was conducted on anatomically matched skin and fat tissue biopsies as well as fasting serum probes obtained from 10 lipedema and 11 gender and body mass index-matched control patients. RESULTS: Histologic evaluation of the adipose tissue showed increased intercellular fibrosis and adipocyte hypertrophy. Serum analysis showed an aberrant lipid metabolism without changes in the circulating adipokines. In an adipogenesis gene array, a distinct gene expression profile associated with macrophages was observed. Histologic assessment of the immune cell infiltrate confirmed the increased presence of macrophages, without changes in the T-cell compartment. CONCLUSIONS: Lipedema presents a distinguishable disease with typical tissue architecture and aberrant lipid metabolism, different to obesity or lymphedema. The differentially expressed genes and immune cell infiltration profile in lipedema patients further support these findings.

  • Lipoedema is associated with widespread adipose tissue expansion, particularly in the proximal extremities. The mechanisms that drive the development of lipoedema are unclear. In this Perspective article, we propose a new model for the pathophysiology of lipoedema. We suggest that lipoedema is an oestrogen-dependent disorder of adipose tissue, which is triggered by a dysfunction of caveolin 1 (CAV1) and subsequent uncoupling of feedback mechanisms between CAV1, the matrix metalloproteinase MMP14 and oestrogen receptors. In addition, reduced CAV1 activity also leads to the activation of ERα and impaired regulation of the lymphatic system through the transcription factor prospero homeobox 1 (PROX1). The resulting upregulation of these factors could effectively explain the main known features of lipoedema, such as adipose hypertrophy, dysfunction of blood and lymphatic vessels, the overall oestrogen dependence and the associated sexual dimorphism, and the mechanical compliance of adipose tissue.

  • Lipedema is a chronic adipose tissue disorder characterized by the disproportional subcutaneous deposition of fat and is commonly misdiagnosed as lymphedema or obesity. The molecular determinants of the lipedema remain largely unknown and only speculations exist regarding the lymphatic system involvement. The aim of the present study is to characterize the lymphatic vascular involvement in established lipedema. The histological and molecular characterization was conducted on anatomically-matched skin and fat biopsies as well as serum samples from eleven lipedema and ten BMI-matched healthy patients. Increased systemic levels of vascular endothelial growth factor (VEGF)-C (P = 0.02) were identified in the serum of lipedema patients. Surprisingly, despite the increased VEGF-C levels no morphological changes of the lymphatic vessels were observed. Importantly, expression analysis of lymphatic and blood vessel-related genes revealed a marked downregulation of Tie2 (P < 0.0001) and FLT4 (VEGFR-3) (P = 0.02) consistent with an increased macrophage infiltration (P = 0.009), without changes in the expression of other lymphatic markers. Interestingly, a distinct local cytokine milieu, with decreased VEGF-A (P = 0.04) and VEGF-D (P = 0.02) expression was identified. No apparent lymphatic anomaly underlies lipedema, providing evidence for the different disease nature in comparison to lymphedema. The changes in the lymphatic-related cytokine milieu might be related to a modified vascular permeability developed secondarily to lipedema progression.

  • OBJECTIVE: Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS: Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS: No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS: Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.

  • OBJECTIVE: The aim of this study is to compare tissue sodium and fat content in the upper and lower extremities of participants with lipedema versus controls using magnetic resonance imaging (MRI). METHODS: MRI was performed at 3.0 T in females with lipedema (n = 15, age = 43.2 ± 10.0 years, BMI = 30.3 ± 4.4 kg/m2 ) and controls without lipedema (n = 14, age = 42.8 ± 13.2 years, BMI = 28.8 ± 4.4 kg/m2 ). Participants were assessed for pain and disease stage. Sodium MRI was performed in the forearm and calf to quantify regional tissue sodium content (TSC, mmol/L). Chemical-shift-encoded water-fat MRI was performed in identical regions for measurement of fat/water (ratio). RESULTS: In the calf, skin TSC (16.3 ± 2.6 vs. 14.4 ± 2.2 mmol/L, P = 0.04), muscle TSC (20.3 ± 3.0 vs. 18.3 ± 1.7 mmol/L, P = 0.03), and fat/water (1.03 ± 0.37 vs. 0.56 ± 0.21 ratio, P < 0.001) were significantly higher in participants with lipedema versus control participants. In the forearm, skin TSC (13.4 ± 3.3 vs. 12.0 ± 2.3 mmol/L, P = 0.2, Cohen's d = 0.50) and fat/water (0.65 ± 0.24 vs. 0.48 ± 0.24 ratio, P = 0.07, Cohen's d = 0.68) demonstrated moderate effect sizes in participants with lipedema versus control participants. Calf skin TSC was significantly correlated with pain (Spearman's rho = 0.55, P = 0.03) and disease stage (Spearman's rho = 0.82, P < 0.001) among participants with lipedema. CONCLUSIONS: MRI-measured tissue sodium and fat content are significantly higher in the lower extremities, but not upper extremities, of patients with lipedema compared with BMI-matched controls.

  • Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.

  • The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-&gamma; and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.

  • Lipedema can cause chronic pain and increases patients’ risk for conditions such as lymphedema and venous disease. This author explores how lipedema affects the body, why its effects are disproportionate in the lower body, and how to diagnose and manage the condition.

  • BACKGROUND: Although a large number of adult women worldwide are affected by lipedema, the physiologic conditions triggering onset and progression of this chronic disease remain enigmatic. In the present study, a descriptive epidemiologic situation of postoperative lipedema patients is presented. METHODS: The authors developed an online survey questionnaire for lipedema patients in Germany. The survey was conducted on 209 female patients who had been diagnosed with lipedema and had undergone tumescent liposuction. RESULTS: Most of the participants (average age, 38.5 years) had noticed a first manifestation of the disease at the age of 16. It took a mean of 15 years to accomplish diagnosis. Liposuction led to a significant reduction of pain, swelling, tenderness, and easy bruising as confirmed by the majority of patients. Hypothyroidism [n = 75 (35.9 percent) and depression [n = 48 (23.0 percent)] occurred at a frequency far beyond the average prevalence in the German population. The prevalence of diabetes type 1 [n = 3 (1.4 percent)], and diabetes type 2 [n = 2 (1 percent)] was particularly low among the respondents. Forty-seven of the lipedema patients (approximately 22.5 percent) suffered from a diagnosed migraine. Following liposuction, the frequency and/or intensity of migraine attacks became markedly reduced, as stated by 32 patients (68.1 percent). CONCLUSIONS: Quality of life increases significantly after surgery with a reduction of pain and swelling and decreased tendency to easy bruising. The high prevalence of hypothyroidism in lipedema patients could be related to the frequently observed lipedema-associated obesity. The low prevalence of diabetes, dyslipidemia, and hypertension appears to be a specific characteristic distinguishing lipedema from lifestyle-induced obesity.

  • Background: Lipedema and Dercum's disease (DD) are incompletely characterized adipose tissue diseases, and objective measures of disease profiles are needed to aid in differential diagnosis. We hypothesized that fluid properties, quantified as tissue water bioimpedance in the upper and lower extremities, differ regionally between these conditions. Methods and Results: Women (cumulative n = 156) with lipedema (n = 110), DD (n = 25), or without an adipose disease matched for age and body mass index to early stage lipedema patients (i.e., controls n = 21) were enrolled. Bioimpedance spectroscopy (BIS) was applied to measure impedance values in the arms and legs, indicative of extracellular water levels. Impedance values were recorded for each limb, as well as the leg-to-arm impedance ratio. Regression models were applied to evaluate hypothesized relationships between impedance and clinical indicators of disease (significance criteria: two-sided p < 0.05). Higher extracellular water was indicated (i) in the legs of patients with higher compared with lower stages of lipedema (p = 0.03), (ii) in the leg-to-arm impedance ratio in patients with lipedema compared with patients with DD (p ≤ 0.001), and (iii) in the leg-to-arm impedance ratio in patients with stage 1 lipedema compared with controls (p ≤ 0.01). Conclusion: BIS is a noninvasive portable modality to assess tissue water, and this device is available in both specialized and nonspecialized centers. These findings support that regional bioimpedance measures may help to distinguish lipedema from DD, as well as to identify early stages of lipedema.

  • Background: Lipedema and Dercum's disease (DD) are incompletely characterized adipose tissue diseases, and objective measures of disease profiles are needed to aid in differential diagnosis. We hypothesized that fluid properties, quantified as tissue water bioimpedance in the upper and lower extremities, differ regionally between these conditions. Methods and Results: Women (cumulative n = 156) with lipedema (n = 110), DD (n = 25), or without an adipose disease matched for age and body mass index to early stage lipedema patients (i.e., controls n = 21) were enrolled. Bioimpedance spectroscopy (BIS) was applied to measure impedance values in the arms and legs, indicative of extracellular water levels. Impedance values were recorded for each limb, as well as the leg-to-arm impedance ratio. Regression models were applied to evaluate hypothesized relationships between impedance and clinical indicators of disease (significance criteria: two-sided p < 0.05). Higher extracellular water was indicated (i) in the legs of patients with higher compared with lower stages of lipedema (p = 0.03), (ii) in the leg-to-arm impedance ratio in patients with lipedema compared with patients with DD (p ≤ 0.001), and (iii) in the leg-to-arm impedance ratio in patients with stage 1 lipedema compared with controls (p ≤ 0.01). Conclusion: BIS is a noninvasive portable modality to assess tissue water, and this device is available in both specialized and nonspecialized centers. These findings support that regional bioimpedance measures may help to distinguish lipedema from DD, as well as to identify early stages of lipedema.

  • Lipedema is a painful fat disease of loose connective tissue usually misdiagnosed as lifestyle-induced obesity that affects ~10% of women of European descent as well as other populations. Lipedema is characterized by symmetric enlargement of the buttocks, hips, and legs due to increased loose connective tissue; arms are also affected in 80% of patients. Lipedema loose connective tissue is characterized by hypertrophic adipocytes, inflammatory cells, and dilated leaky blood and lymphatic vessels. Altered fluid flux through the tissue causes accumulation of fluid, protein, and other constituents in the interstitium resulting in recruitment of inflammatory cells, which in turn stimulates fibrosis and results in difficulty in weight loss. Inflammation and excess interstitial substance may also activate nerve fibers instigating the painful lipedema fat tissue. More research is needed to characterize lipedema loose connective tissue structure in depth, as well as the form and function of blood and lymphatic vessels. Understanding the pathophysiology of the disease will allow healthcare providers to diagnose the disease and develop treatments.

  • BACKGROUND: Lipedema is characterized by localized accumulation of fat in the extremities, which is typically unresponsive to dietary regimens or physical activity. Although the disease is well described and has a high incidence, little is known regarding the molecular and cellular mechanisms underlying its pathogenesis. The aim of this study was to investigate the pathophysiology of lipedema adipose cells in vitro. METHODS: Adipose-derived stem cells were isolated from lipoaspirates derived from lipedema and nonlipedema patients undergoing tumescent liposuction. In vitro differentiation studies were performed for up to 14 days using adipogenic or regular culture medium. Supernatants and cell lysates were tested for adiponectin, leptin, insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 content at days 7 and 14, using enzyme-linked immunosorbent assays. Adipogenesis was evaluated by visualizing and measuring cytoplasmic lipid accumulation. RESULTS: Lipedema adipose-derived stem cells showed impeded adipogenesis already at early stages of in vitro differentiation. Concomitant with a strongly reduced cytoplasmic lipid accumulation, significantly lower amounts of adiponectin and leptin were detectable in supernatants from lipedema adipose-derived stem cells and adipocytes compared with control cells. In addition, lipedema and nonlipedema cells differed in their expression of insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 and in their proliferative activity. CONCLUSIONS: The authors' findings indicate that in vitro adipogenesis of lipedema adipose-derived stem cells is severely hampered compared with nonlipedema adipose-derived stem cells. Lipedema adipose cells differ not only in their lipid storage capacity but also in their adipokine expression pattern. This might serve as a valuable marker for diagnosis of lipedema, probably from an early stage on.

  • Obese adipose tissue expansion is an inflammatory process that results in dysregulated lipolysis, increased circulating lipids, ectopic lipid deposition, and systemic insulin resistance. Lymphatic vessels provide a route of fluid, macromolecule, and immune cell clearance, and lymphangiogenesis increases this capability. Indeed, inflammation-associated lymphangiogenesis is critical in resolving acute and chronic inflammation, but it is largely absent in obese adipose tissue. Enhancing adipose tissue lymphangiogenesis could, therefore, improve metabolism in obesity. To test this hypothesis, transgenic mice with doxycycline-inducible expression of murine vascular endothelial growth factor (VEGF)-D under a tightly controlled Tet-On promoter were crossed with adipocyte-specific adiponectin-reverse tetracycline-dependent transactivator mice (Adipo-VD) to stimulate adipose tissue-specific lymphangiogenesis during 16-week high-fat diet-induced obesity. Adipose VEGF-D overexpression induced de novo lymphangiogenesis in murine adipose tissue, and obese Adipo-VD mice exhibited enhanced glucose clearance, lower insulin levels, and reduced liver triglycerides. On β-3 adrenergic stimulation, Adipo-VD mice exhibited more rapid and increased glycerol flux from adipose tissue, suggesting that the lymphatics are a potential route of glycerol clearance. Resident macrophage crown-like structures were scarce and total F4/80+ macrophages were reduced in obese Adipo-VD s.c. adipose tissue with evidence of increased immune trafficking from the tissue. Augmenting VEGF-D signaling and lymphangiogenesis specifically in adipose tissue, therefore, reduces obesity-associated immune accumulation and improves metabolic responsiveness.

  • Background and Aim: Lipedema is a common painful SAT disorder characterized by enlargement of fat primarily in the legs of women. Case reports of lipedema tissue samples demonstrate fluid and fibrosis in the interstitial matrix, increased macrophages, and adipocyte hypertrophy. The aims of this project are to investigate blood vasculature, immune cells, and structure of lipedema tissue in a cohort of women. Methods: Forty-nine participants, 19 controls and 30 with lipedema, were divided into groups based on body mass index (BMI): Non-Obese (BMI 20 to <30 kg/m2) and Obese (BMI 30 to <40 kg/m2). Histological sections from thigh skin and fat were stained with H&E. Adipocyte area and blood vessel size and number were quantified using ImageJ software. Markers for macrophages (CD68), mast cells (CD117), T cells (CD3), endothelial cells (CD31), blood (SMA), and lymphatic (D2-40 and Lyve-1) vessels were investigated by IHC and IF. Results: Non-Obese Lipedema adipocyte area was larger than Non-Obese Controls (p=0.005) and similar to Obese Lipedema and Obese Controls. Macrophage numbers were significantly increased in Non-Obese (p < 0.005) and Obese (p < 0.05) Lipedema skin and fat compared to Control groups. No differences in T lymphocytes or mast cells were observed when comparing Lipedema to Control in both groups. SMA staining revealed increased dermal vessels in Non-Obese Lipedema patients (p < 0.001) compared to Non-Obese Controls. Lyve-1 and D2-40 staining showed a significant increase in lymphatic vessel area but not in number or perimeter in Obese Lipedema participants (p < 0.05) compared to Controls (Obese and Non-Obese). Areas of angiogenesis were found in the fat in 30% of lipedema participants but not controls. Conclusion: Hypertrophic adipocytes, increased numbers of macrophages and blood vessels, and dilation of capillaries in thigh tissue of non-obese women with lipedema suggest inflammation, and angiogenesis occurs independent of obesity and demonstrates a role of altered vasculature in the manifestation of the disease.

  • An endothelial cell monolayer separates interstitia from blood and lymph, and determines the bidirectional transfer of solutes and macromolecules across these biological spaces. We review advances in transport modalities across these endothelial barriers. Glucose is a major fuel for the brain and peripheral tissues, and insulin acts on both central and peripheral tissues to promote whole-body metabolic signalling and anabolic activity. Blood-brain barrier endothelial cells display stringent tight junctions and lack pinocytic activity. Delivery of blood glucose and insulin to the brain occurs through their respective carrier (Glucose transporter 1) and receptor (insulin receptor), enacting bona fide transcytosis. At supraphysiological concentrations, insulin is also likely transferred by fluid phase cellular uptake and paracellular transport, especially in peripheral microvascular endothelia. The lymphatic microvasculature also transports insulin but in this case from tissues to lymph and therefrom to blood. This serves to end the hormone's action and to absorb highly concentrated subcutaneously injected insulin in diabetic individuals. The former function may involve receptor-mediated transcytosis into lymphatic endothelial cells, the latter fluid phase uptake and paracellular transport. Lymphatic capillaries also mediate carrierdependent transport of other nutrients and macromolecules. These findings challenge the notion that lymphatic capillaries only transport macromolecules through intercellular flaps.

Last update from database: 7/1/24, 7:38 AM (UTC)