Your search

Topic

Results 73 resources

  • BACKGROUND: Lipedema is a common adipose tissue disorder affecting women, characterized by a symmetric subcutaneous adipose tissue deposition, particularly of the lower extremities. Lipedema is usually underdiagnosed, thus remaining an undertreated disease. Importantly, no histopathologic or molecular hallmarks exist to clearly diagnose the disease, which is often misinterpreted as obesity or lymphedema. MATERIALS AND METHODS: The aim of the present study is to characterize in detail morphologic and molecular alterations in the adipose tissue composition of lipedema patients compared with healthy controls. Detailed histopathologic and molecular characterization was performed using lipid and cytokine quantification as well as gene expression arrays. The analysis was conducted on anatomically matched skin and fat tissue biopsies as well as fasting serum probes obtained from 10 lipedema and 11 gender and body mass index-matched control patients. RESULTS: Histologic evaluation of the adipose tissue showed increased intercellular fibrosis and adipocyte hypertrophy. Serum analysis showed an aberrant lipid metabolism without changes in the circulating adipokines. In an adipogenesis gene array, a distinct gene expression profile associated with macrophages was observed. Histologic assessment of the immune cell infiltrate confirmed the increased presence of macrophages, without changes in the T-cell compartment. CONCLUSIONS: Lipedema presents a distinguishable disease with typical tissue architecture and aberrant lipid metabolism, different to obesity or lymphedema. The differentially expressed genes and immune cell infiltration profile in lipedema patients further support these findings.

  • Lipoedema is associated with widespread adipose tissue expansion, particularly in the proximal extremities. The mechanisms that drive the development of lipoedema are unclear. In this Perspective article, we propose a new model for the pathophysiology of lipoedema. We suggest that lipoedema is an oestrogen-dependent disorder of adipose tissue, which is triggered by a dysfunction of caveolin 1 (CAV1) and subsequent uncoupling of feedback mechanisms between CAV1, the matrix metalloproteinase MMP14 and oestrogen receptors. In addition, reduced CAV1 activity also leads to the activation of ERα and impaired regulation of the lymphatic system through the transcription factor prospero homeobox 1 (PROX1). The resulting upregulation of these factors could effectively explain the main known features of lipoedema, such as adipose hypertrophy, dysfunction of blood and lymphatic vessels, the overall oestrogen dependence and the associated sexual dimorphism, and the mechanical compliance of adipose tissue.

  • PURPOSE: Breast cancer treatment-related lymphedema (BCRL) evaluation is frequently performed using portable measures of limb volume and bioimpedance asymmetry. Here quantitative magnetic resonance imaging (MRI) is applied to evaluate deep and superficial tissue impairment, in both surgical and contralateral quadrants, to test the hypothesis that BCRL impairment is frequently bilateral and extends beyond regions commonly evaluated with portable external devices. METHODS: 3-T MRI was applied to investigate BCRL topographical impairment. Female BCRL (n = 33; age = 54.1 ± 11.2 years; stage = 1.5 ± 0.8) and healthy (n = 33; age = 49.4 ± 11.0 years) participants underwent quantitative upper limb MRI relaxometry (T2), bioimpedance asymmetry, arm volume asymmetry, and physical evaluation. Parametric tests were applied to evaluate study measurements (i) between BCRL and healthy participants, (ii) between surgical and contralateral limbs, and (iii) in relation to clinical indicators of disease severity. Two-sided p-value < 0.05 was required for significance. RESULTS: Bioimpedance asymmetry was significantly correlated with MRI-measured water relaxation (T2) in superficial tissue. Deep muscle (T2 = 37.6 ± 3.5 ms) and superficial tissue (T2 = 49.8 ± 13.2 ms) relaxation times were symmetric in healthy participants. In the surgical limbs of BCRL participants, deep muscle (T2 = 40.5 ± 4.9 ms) and superficial tissue (T2 = 56.0 ± 14.8 ms) relaxation times were elevated compared to healthy participants, consistent with an edematous micro-environment. This elevation was also observed in contralateral limbs of BCRL participants (deep muscle T2 = 40.3 ± 5.7 ms; superficial T2 = 56.6 ± 13.8 ms). CONCLUSIONS: Regional MRI measures substantiate a growing literature speculating that superficial and deep tissue, in surgical and contralateral quadrants, is affected in BCRL. The implications of these findings in the context of titrating treatment regimens and understanding malignancy recurrence are discussed.

  • Lipedema is a chronic adipose tissue disorder characterized by the disproportional subcutaneous deposition of fat and is commonly misdiagnosed as lymphedema or obesity. The molecular determinants of the lipedema remain largely unknown and only speculations exist regarding the lymphatic system involvement. The aim of the present study is to characterize the lymphatic vascular involvement in established lipedema. The histological and molecular characterization was conducted on anatomically-matched skin and fat biopsies as well as serum samples from eleven lipedema and ten BMI-matched healthy patients. Increased systemic levels of vascular endothelial growth factor (VEGF)-C (P = 0.02) were identified in the serum of lipedema patients. Surprisingly, despite the increased VEGF-C levels no morphological changes of the lymphatic vessels were observed. Importantly, expression analysis of lymphatic and blood vessel-related genes revealed a marked downregulation of Tie2 (P < 0.0001) and FLT4 (VEGFR-3) (P = 0.02) consistent with an increased macrophage infiltration (P = 0.009), without changes in the expression of other lymphatic markers. Interestingly, a distinct local cytokine milieu, with decreased VEGF-A (P = 0.04) and VEGF-D (P = 0.02) expression was identified. No apparent lymphatic anomaly underlies lipedema, providing evidence for the different disease nature in comparison to lymphedema. The changes in the lymphatic-related cytokine milieu might be related to a modified vascular permeability developed secondarily to lipedema progression.

  • OBJECTIVE: Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS: Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS: No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS: Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.

  • Background: Bioimpedance spectroscopy (BIS) demonstrates proficiency in early identification of breast cancer treatment-related lymphedema (BCRL) development. Dual-tab electrodes were designed for consistent and easy electrode placement, however, single-tab electrodes positioned to mimic dual-tab placement on the body may make BIS technology more accessible in community hospitals and outpatient settings. The purpose of this study is to evaluate use of single-tab electrodes for BIS measurements and assess whether single-tab electrodes provide consistent BIS measurements in controls and patients with BCRL. Methods and Results: Upper limb BIS ratios were obtained using ImpediMed L-Dex® U400 in controls (n = 13; age = 23-75 years; 9 repeated measurements) using dual-tab and single-tab electrodes. BCRL patients (n = 17; Stage = 1.65 ± 0.49; number nodes removed = 16.3 ± 7.7; age = 50.9 ± 10.6 years; age range = 33-77 years) and healthy controls (n = 19) were evaluated to determine if single-tab electrodes provided discriminatory capacity for detecting BCRL. Intraclass correlation coefficients (ICC), linear mixed-effects models, Wilcoxon rank-sum tests, and linear regression with two-sided p-values <0.05 required for significance were applied. Single-tab electrodes were found to be statistically interchangeable with dual-tab electrodes (ICC = 0.966; 95% confidence interval = 0.937-0.982). No evidence of differences in single-tab versus dual-tab measurements were found for L-Dex ratios (p = 0.74) from the linear mixed-effects model. Repeated trials involving reuse of the same electrodes revealed a trend toward increases in L-Dex ratio for both styles of electrodes. Single-tab electrodes were significant (p < 0.0001) for discriminating between BCRL and control subjects. Conclusion: Findings expand upon the potential use of BIS in clinic and research settings and suggest that readily available single-tab electrodes provide similar results as dual-tab electrodes for BIS measurements.

  • OBJECTIVE: The aim of this study is to compare tissue sodium and fat content in the upper and lower extremities of participants with lipedema versus controls using magnetic resonance imaging (MRI). METHODS: MRI was performed at 3.0 T in females with lipedema (n = 15, age = 43.2 ± 10.0 years, BMI = 30.3 ± 4.4 kg/m2 ) and controls without lipedema (n = 14, age = 42.8 ± 13.2 years, BMI = 28.8 ± 4.4 kg/m2 ). Participants were assessed for pain and disease stage. Sodium MRI was performed in the forearm and calf to quantify regional tissue sodium content (TSC, mmol/L). Chemical-shift-encoded water-fat MRI was performed in identical regions for measurement of fat/water (ratio). RESULTS: In the calf, skin TSC (16.3 ± 2.6 vs. 14.4 ± 2.2 mmol/L, P = 0.04), muscle TSC (20.3 ± 3.0 vs. 18.3 ± 1.7 mmol/L, P = 0.03), and fat/water (1.03 ± 0.37 vs. 0.56 ± 0.21 ratio, P < 0.001) were significantly higher in participants with lipedema versus control participants. In the forearm, skin TSC (13.4 ± 3.3 vs. 12.0 ± 2.3 mmol/L, P = 0.2, Cohen's d = 0.50) and fat/water (0.65 ± 0.24 vs. 0.48 ± 0.24 ratio, P = 0.07, Cohen's d = 0.68) demonstrated moderate effect sizes in participants with lipedema versus control participants. Calf skin TSC was significantly correlated with pain (Spearman's rho = 0.55, P = 0.03) and disease stage (Spearman's rho = 0.82, P < 0.001) among participants with lipedema. CONCLUSIONS: MRI-measured tissue sodium and fat content are significantly higher in the lower extremities, but not upper extremities, of patients with lipedema compared with BMI-matched controls.

  • Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.

  • The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-&gamma; and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.

  • The metabolic consequences of obesity arise from local inflammation within expanding adipose tissue. In pre-clinical studies targeting various inflammatory factors, systemic metabolism can be improved through reduced adipose inflammation. Lymphatic vessels are a critical regulator of inflammation through roles in fluid and macromolecule transport and immune cell trafficking and immunomodulation. Lymphangiogenesis, the expansion of the lymphatic network, is often a necessary step in restoring tissue homeostasis. Using Adipo-VD mice, a model of adipocyte-specific, inducible overexpression of the potent lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D), we previously identified that dense de novo adipose lymphatics reduced immune accumulation and improved glucose homeostasis in obesity. On chow diet, however, Adipo-VD mice demonstrated increased adipose tissue immune cells, fibrosis, and inflammation. Here, we characterize the time course of resident macrophage accumulation and lymphangiogenesis in male and female Adipo-VD mice fed chow and high fat diets, examining multiple adipose depots over 4 months. We find that macrophage infiltration occurs early, but resolves with concurrent lymphatic expansion that begins robustly after 1 month of VEGF-D overexpression in white adipose tissue. In obesity, female Adipo-VD mice exhibit reduced lymphangiogenesis and maintain a more glycolytic metabolism compared to Adipo-VD males and their littermates. Adipose lymphatic structures appear to expand by a lymphvasculogenic mechanism involving lymphatic endothelial cell proliferation and organization with a cell source we that failed to identify; hematopoietic cells afford minimal structural contribution. While a net positive effect occurs in Adipo-VD mice, adipose tissue lymphangiogenesis demonstrates a dichotomous, and time-dependent, inflammatory tissue remodeling response.

  • Purpose To quantify chemical exchange saturation transfer contrast in upper extremities of participants with lymphedema before and after standardized lymphatic mobilization therapy using correction procedures for B0 and B1 heterogeneity, and T1 relaxation. Methods Females with (n = 12) and without (n = 17) breast cancer treatment-related lymphedema (BCRL) matched for age and body mass index were scanned at 3.0T MRI. B1 efficiency and T1 were calculated in series with chemical exchange saturation transfer in bilateral axilla (B1 amplitude = 2µT, Δω = ±5.5 ppm, slices = 9, spatial resolution = 1.8 × 1.47 × 5.5 mm3). B1 dispersion measurements (B1 = 1-3 µT; increment = 0.5 µT) were performed in controls (n = 6 arms in 3 subjects). BCRL participants were scanned pre- and post-manual lymphatic drainage (MLD) therapy. Chemical exchange saturation transfer amide proton transfer (APT) and nuclear Overhauser effect (NOE) metrics corrected for B1 efficiency were calculated, including proton transfer ratio (PTR'), magnetization transfer ratio asymmetry , and apparent exchange-dependent relaxation (AREX'). Nonparametric tests were used to evaluate relationships between metrics in BCRL participants pre- versus post-MLD (two-sided P &lt; 0.05 required for significance). Results B1 dispersion experiments showed nonlinear dependence of Z-values on B1 efficiency in the upper extremities; PTR' showed &lt; 1% mean fractional difference between subject-specific and group-level correction procedures. PTR'APT significantly correlated with T1 (Spearman's rho = 0.57, P &lt; 0.001) and body mass index (Spearman's rho = −0.37, P = 0.029) in controls and with lymphedema stage (Spearman's rho = 0.48, P = 0.017) in BCRL participants. Following MLD therapy, PTR'APT significantly increased in the affected arm of BCRL participants (pre- vs. post-MLD: 0.41 ± 0.05 vs. 0.43 ± 0.03, P = 0.02), consistent with treatment effects from mobilized lymphatic fluid. Conclusion Chemical exchange saturation transfer metrics, following appropriate correction procedures, respond to lymphatic mobilization therapies and may have potential for evaluating treatments in participants with secondary lymphedema.

  • Lipedema can cause chronic pain and increases patients’ risk for conditions such as lymphedema and venous disease. This author explores how lipedema affects the body, why its effects are disproportionate in the lower body, and how to diagnose and manage the condition.

  • BACKGROUND: Although a large number of adult women worldwide are affected by lipedema, the physiologic conditions triggering onset and progression of this chronic disease remain enigmatic. In the present study, a descriptive epidemiologic situation of postoperative lipedema patients is presented. METHODS: The authors developed an online survey questionnaire for lipedema patients in Germany. The survey was conducted on 209 female patients who had been diagnosed with lipedema and had undergone tumescent liposuction. RESULTS: Most of the participants (average age, 38.5 years) had noticed a first manifestation of the disease at the age of 16. It took a mean of 15 years to accomplish diagnosis. Liposuction led to a significant reduction of pain, swelling, tenderness, and easy bruising as confirmed by the majority of patients. Hypothyroidism [n = 75 (35.9 percent) and depression [n = 48 (23.0 percent)] occurred at a frequency far beyond the average prevalence in the German population. The prevalence of diabetes type 1 [n = 3 (1.4 percent)], and diabetes type 2 [n = 2 (1 percent)] was particularly low among the respondents. Forty-seven of the lipedema patients (approximately 22.5 percent) suffered from a diagnosed migraine. Following liposuction, the frequency and/or intensity of migraine attacks became markedly reduced, as stated by 32 patients (68.1 percent). CONCLUSIONS: Quality of life increases significantly after surgery with a reduction of pain and swelling and decreased tendency to easy bruising. The high prevalence of hypothyroidism in lipedema patients could be related to the frequently observed lipedema-associated obesity. The low prevalence of diabetes, dyslipidemia, and hypertension appears to be a specific characteristic distinguishing lipedema from lifestyle-induced obesity.

  • Background: Lipedema and Dercum's disease (DD) are incompletely characterized adipose tissue diseases, and objective measures of disease profiles are needed to aid in differential diagnosis. We hypothesized that fluid properties, quantified as tissue water bioimpedance in the upper and lower extremities, differ regionally between these conditions. Methods and Results: Women (cumulative n = 156) with lipedema (n = 110), DD (n = 25), or without an adipose disease matched for age and body mass index to early stage lipedema patients (i.e., controls n = 21) were enrolled. Bioimpedance spectroscopy (BIS) was applied to measure impedance values in the arms and legs, indicative of extracellular water levels. Impedance values were recorded for each limb, as well as the leg-to-arm impedance ratio. Regression models were applied to evaluate hypothesized relationships between impedance and clinical indicators of disease (significance criteria: two-sided p < 0.05). Higher extracellular water was indicated (i) in the legs of patients with higher compared with lower stages of lipedema (p = 0.03), (ii) in the leg-to-arm impedance ratio in patients with lipedema compared with patients with DD (p ≤ 0.001), and (iii) in the leg-to-arm impedance ratio in patients with stage 1 lipedema compared with controls (p ≤ 0.01). Conclusion: BIS is a noninvasive portable modality to assess tissue water, and this device is available in both specialized and nonspecialized centers. These findings support that regional bioimpedance measures may help to distinguish lipedema from DD, as well as to identify early stages of lipedema.

  • Background: Lipedema and Dercum's disease (DD) are incompletely characterized adipose tissue diseases, and objective measures of disease profiles are needed to aid in differential diagnosis. We hypothesized that fluid properties, quantified as tissue water bioimpedance in the upper and lower extremities, differ regionally between these conditions. Methods and Results: Women (cumulative n = 156) with lipedema (n = 110), DD (n = 25), or without an adipose disease matched for age and body mass index to early stage lipedema patients (i.e., controls n = 21) were enrolled. Bioimpedance spectroscopy (BIS) was applied to measure impedance values in the arms and legs, indicative of extracellular water levels. Impedance values were recorded for each limb, as well as the leg-to-arm impedance ratio. Regression models were applied to evaluate hypothesized relationships between impedance and clinical indicators of disease (significance criteria: two-sided p < 0.05). Higher extracellular water was indicated (i) in the legs of patients with higher compared with lower stages of lipedema (p = 0.03), (ii) in the leg-to-arm impedance ratio in patients with lipedema compared with patients with DD (p ≤ 0.001), and (iii) in the leg-to-arm impedance ratio in patients with stage 1 lipedema compared with controls (p ≤ 0.01). Conclusion: BIS is a noninvasive portable modality to assess tissue water, and this device is available in both specialized and nonspecialized centers. These findings support that regional bioimpedance measures may help to distinguish lipedema from DD, as well as to identify early stages of lipedema.

  • Lipedema is a painful fat disease of loose connective tissue usually misdiagnosed as lifestyle-induced obesity that affects ~10% of women of European descent as well as other populations. Lipedema is characterized by symmetric enlargement of the buttocks, hips, and legs due to increased loose connective tissue; arms are also affected in 80% of patients. Lipedema loose connective tissue is characterized by hypertrophic adipocytes, inflammatory cells, and dilated leaky blood and lymphatic vessels. Altered fluid flux through the tissue causes accumulation of fluid, protein, and other constituents in the interstitium resulting in recruitment of inflammatory cells, which in turn stimulates fibrosis and results in difficulty in weight loss. Inflammation and excess interstitial substance may also activate nerve fibers instigating the painful lipedema fat tissue. More research is needed to characterize lipedema loose connective tissue structure in depth, as well as the form and function of blood and lymphatic vessels. Understanding the pathophysiology of the disease will allow healthcare providers to diagnose the disease and develop treatments.

  • BACKGROUND: Lipedema is characterized by localized accumulation of fat in the extremities, which is typically unresponsive to dietary regimens or physical activity. Although the disease is well described and has a high incidence, little is known regarding the molecular and cellular mechanisms underlying its pathogenesis. The aim of this study was to investigate the pathophysiology of lipedema adipose cells in vitro. METHODS: Adipose-derived stem cells were isolated from lipoaspirates derived from lipedema and nonlipedema patients undergoing tumescent liposuction. In vitro differentiation studies were performed for up to 14 days using adipogenic or regular culture medium. Supernatants and cell lysates were tested for adiponectin, leptin, insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 content at days 7 and 14, using enzyme-linked immunosorbent assays. Adipogenesis was evaluated by visualizing and measuring cytoplasmic lipid accumulation. RESULTS: Lipedema adipose-derived stem cells showed impeded adipogenesis already at early stages of in vitro differentiation. Concomitant with a strongly reduced cytoplasmic lipid accumulation, significantly lower amounts of adiponectin and leptin were detectable in supernatants from lipedema adipose-derived stem cells and adipocytes compared with control cells. In addition, lipedema and nonlipedema cells differed in their expression of insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 and in their proliferative activity. CONCLUSIONS: The authors' findings indicate that in vitro adipogenesis of lipedema adipose-derived stem cells is severely hampered compared with nonlipedema adipose-derived stem cells. Lipedema adipose cells differ not only in their lipid storage capacity but also in their adipokine expression pattern. This might serve as a valuable marker for diagnosis of lipedema, probably from an early stage on.

  • Background: Metastatic tumor cells spread through lymphatic vessels and colonize draining lymph nodes (LNs). It is known that tumors induce lymphangiogenesis to enhance lymphatic metastasis and that metastatic cancer cells are carried by lymph flow to LNs. Methods and Results: Here, we investigated the molecular and cellular regulation of collecting lymphatic vessel contraction in vessels draining a metastatic tumor using intravital microscopy. In tumor-draining collecting lymphatic vessels, we found vessel contraction was suppressed. The infiltration of peritumor tissue by inducible nitric oxide synthase positive and CD11b+Gr1+ myeloid cells played a critical role in the suppression of lymphatic contraction. Depletion of Gr1+ cells with an anti-Gr1 antibody improved contraction of tumor-draining lymphatic vessels. In addition, inducing tumor cell death restored lymphatic contraction in nude mice. Conclusions: These findings indicate that tumors contribute to regulation of lymphatic transport in a reversible manner, warranting further investigation into the role of impaired lymphatic transport in cancer progression.

  • Obese adipose tissue expansion is an inflammatory process that results in dysregulated lipolysis, increased circulating lipids, ectopic lipid deposition, and systemic insulin resistance. Lymphatic vessels provide a route of fluid, macromolecule, and immune cell clearance, and lymphangiogenesis increases this capability. Indeed, inflammation-associated lymphangiogenesis is critical in resolving acute and chronic inflammation, but it is largely absent in obese adipose tissue. Enhancing adipose tissue lymphangiogenesis could, therefore, improve metabolism in obesity. To test this hypothesis, transgenic mice with doxycycline-inducible expression of murine vascular endothelial growth factor (VEGF)-D under a tightly controlled Tet-On promoter were crossed with adipocyte-specific adiponectin-reverse tetracycline-dependent transactivator mice (Adipo-VD) to stimulate adipose tissue-specific lymphangiogenesis during 16-week high-fat diet-induced obesity. Adipose VEGF-D overexpression induced de novo lymphangiogenesis in murine adipose tissue, and obese Adipo-VD mice exhibited enhanced glucose clearance, lower insulin levels, and reduced liver triglycerides. On β-3 adrenergic stimulation, Adipo-VD mice exhibited more rapid and increased glycerol flux from adipose tissue, suggesting that the lymphatics are a potential route of glycerol clearance. Resident macrophage crown-like structures were scarce and total F4/80+ macrophages were reduced in obese Adipo-VD s.c. adipose tissue with evidence of increased immune trafficking from the tissue. Augmenting VEGF-D signaling and lymphangiogenesis specifically in adipose tissue, therefore, reduces obesity-associated immune accumulation and improves metabolic responsiveness.

  • Background and Aim: Lipedema is a common painful SAT disorder characterized by enlargement of fat primarily in the legs of women. Case reports of lipedema tissue samples demonstrate fluid and fibrosis in the interstitial matrix, increased macrophages, and adipocyte hypertrophy. The aims of this project are to investigate blood vasculature, immune cells, and structure of lipedema tissue in a cohort of women. Methods: Forty-nine participants, 19 controls and 30 with lipedema, were divided into groups based on body mass index (BMI): Non-Obese (BMI 20 to <30 kg/m2) and Obese (BMI 30 to <40 kg/m2). Histological sections from thigh skin and fat were stained with H&E. Adipocyte area and blood vessel size and number were quantified using ImageJ software. Markers for macrophages (CD68), mast cells (CD117), T cells (CD3), endothelial cells (CD31), blood (SMA), and lymphatic (D2-40 and Lyve-1) vessels were investigated by IHC and IF. Results: Non-Obese Lipedema adipocyte area was larger than Non-Obese Controls (p=0.005) and similar to Obese Lipedema and Obese Controls. Macrophage numbers were significantly increased in Non-Obese (p < 0.005) and Obese (p < 0.05) Lipedema skin and fat compared to Control groups. No differences in T lymphocytes or mast cells were observed when comparing Lipedema to Control in both groups. SMA staining revealed increased dermal vessels in Non-Obese Lipedema patients (p < 0.001) compared to Non-Obese Controls. Lyve-1 and D2-40 staining showed a significant increase in lymphatic vessel area but not in number or perimeter in Obese Lipedema participants (p < 0.05) compared to Controls (Obese and Non-Obese). Areas of angiogenesis were found in the fat in 30% of lipedema participants but not controls. Conclusion: Hypertrophic adipocytes, increased numbers of macrophages and blood vessels, and dilation of capillaries in thigh tissue of non-obese women with lipedema suggest inflammation, and angiogenesis occurs independent of obesity and demonstrates a role of altered vasculature in the manifestation of the disease.

Last update from database: 10/17/25, 7:21 AM (UTC)

Explore