Your search

Results 39 resources

  • Lipedema is a chronic and progressive adipose tissue disorder, characterized by the painful and disproportionate increase of the subcutaneous fat in the lower and/or upper extremities. While distinct immune cell infiltration is a known hallmark of the disease, its role in the onset and development of lipedema remains unclear. To analyze the macrophage composition and involved signaling pathways, anatomically matched lipedema and control tissue samples were collected intra-operatively from gender- and BMI-matched patients, and the Stromal Vascular Fraction (SVF) was used for Cytometry by Time-of-Flight (CyTOF) and RNA sequencing. The phenotypic characterization of the immune component of lipedema versus control SVF using CyTOF revealed significantly increased numbers of CD163 macrophages. To gain further insight into this macrophage composition and molecular pathways, RNA sequencing of isolated CD11b+ cells was performed. The analysis suggested a significant modification of distinct gene ontology clusters in lipedema, including cytokine-mediated signaling activity, interleukin-1 receptor activity, extracellular matrix organization, and regulation of androgen receptor signaling. As distinct macrophage populations are known to affect adipose tissue differentiation and metabolism, we evaluated the effect of M2 to M1 macrophage polarization in lipedema using the selective PI3Kγ inhibitor IPI-549. Surprisingly, the differentiation of adipose tissue-derived stem cells with conditioned medium from IPI-549 treated SVF resulted in a significant decreased accumulation of lipids in lipedema versus control SVF. In conclusion, our results indicate that CD163+ macrophages are a critical component in lipedema and re-polarization of lipedema macrophages can normalize the differentiation of adipose-derived stem cells in vitro evaluated by the cellular lipid accumulation. These data open a new chapter in understanding lipedema pathophysiology and may indicate potential treatment options.

  • OBJECTIVE: Does short-term use of pneumatic compression devices (PCD) and off-the-shelf compression alleviate symptoms and improve quality of life in women with lipedema and secondary lipolymphedema? METHODS: Prospective, randomized controlled, industry-sponsored, proof-in-principle study comparing PCD plus conservative care (PCD+CC) to CC alone (control). Adult females with bilateral lipedema and secondary lymphedema were randomized to PCD+CC or CC. Outcome measures were lower limb and truncal circumferential measurements, bioimpedance, and quality-of-life, symptom, and pain intensity questionnaires. RESULTS: Both groups experienced improvements in leg circumference and bioimpedance with more improvement in the PCD+CC group than the CC group. Pain scores of the SF-36 survey and numerical rating scales were improved in the PCD+CC group. Wong-Baker Faces scores showed trends toward improvement in both groups. CONCLUSIONS: This proof-in-principle study supports conservative management with graduated compression and with or without PCD for improvement in leg circumference, bioimpedance measurements, and pain in patients with lipedema.

  • Lipoedema is a chronic disease in adipose tissue that almost exclusively affects women during periods of hormonal alterations. Its main symptoms include an abnormal accumulation of subcutaneous fat in the buttock, hips, and legs, which is associated with pain, swelling, and easy bruising. Herein, a grading in three stages is used to determine disease progression. Problematically, lipoedema manifestations are often confused with lifestyle-induced obesity, which is why the various health problems among affected women often remain unrecognized. Overall, research on lipoedema is scarce. As such, this study examined the health, health-related quality of life (HRQOL), and sense of coherence (SOC) among women with lipoedema.

  • Lipedema is a common disorder characterized by excessive deposition of subcutaneous adipose tissue (SAT) in the legs, hips, and buttocks, mainly occurring in adult women. Although it appears to be heritable, no specific genes have yet been identified. To identify potential genetic risk factors for lipedema, we used bioelectrical impedance analysis and anthropometric data from the UK Biobank to identify women with and without a lipedema phenotype. Specifically, we identified women with both a high percentage of fat in the lower limbs and a relatively small waist, adjusting for hip circumference. We performed a genome-wide association study (GWAS) for this phenotype, and performed multiple sensitivity GWAS. In an independent case/control study of lipedema based on strict clinical criteria, we attempted to replicate our top hits. We identified 18 significant loci (p < 5 × 10−9), several of which have previously been identified in GWAS of waist-to-hip ratio with larger effects in women. Two loci (VEGFA and GRB14-COBLL1) were significantly associated with lipedema in the independent replication study. Follow-up analyses suggest an enrichment of genes expressed in blood vessels and adipose tissue, among other tissues. Our findings provide a starting point towards better understanding the genetic and physiological basis of lipedema.

  • In this study an analysis of identified ICG lymphography features of the superficial lymphatics of the lower extremity was undertaken [Table 2.2]. The absence or presence and extent of the superficial lymphatics in the limb with LLLE was assessed to identify if any of these features or combination of features were significantly associated with particular diagnostic groups of primary or secondary cancer related or secondary non-cancer related LLLE. ICG lymphography studies undertaken by the researcher (submitted for publication) had identified two compensatory lymph drainage regions, the contralateral inguinal and axillo-inguinal nodal regions, associated with secondary cancer related LLLE which were not seen or very rarely seen in clinically diagnosed primary LLLE and less so in secondary non-cancer related LLLE. Conversely, retrograde flow in lymph vessels demonstrated during the ICG lymphography procedure was not seen in secondary cancer related LLLE. These observations provided a background rationale to exploring the diagnostic capacity of ICG lymphography in LLLE. One purpose of this study was to explore the feasibility of using ICG lymphography features as a diagnostic tool. It was hoped that identified ICG lymphographic features would allow the individual presenting with persistent leg swelling of unknown causation to be able to be advised that their condition is most likely a secondary non cancer related LLLE rather than an adult onset primary LE and therefore be possibly less likely to progress or deteriorate. This may potentially provide better prognostic information and improve individualised therapeutic plans of management and support compliance (Pigott, 2021). The aim of Part A of this study was to identify the prevalence and characteristics of ICG lymphography features of the lymph vessels, position and extent of DBF and drainage patterns. In addition, Part B of this study was to explore whether using the ALERT standardised ICG lymphography technique and a structured analysis of ICG lymphography features could be translated into a simple score to distinguish the ICG pattern of adult onset primary LLLE from secondary non-cancer related LLLE.

  • INTRODUCTION: Lipedema is a poorly known condition. Diagnosis is based almost exclusively on clinical criteria, which may be subjective and not always reliable. This study aimed to investigate regional body composition (BC) by dual-energy X-ray absorptiometry (DXA) in patients with lipedema and healthy controls and to determine cut-off values of fat mass (FM) indices to provide an additional tool for the diagnosis and staging of this condition. METHODS: This study is a single-center case-control study performed at Lausanne University Hospital, Switzerland. Women with clinically diagnosed lipedema underwent regional BC assessment by DXA. The control group without clinical lipedema was matched for age and body mass index (BMI) at a ratio of 1:2 and underwent similar examination. Regional FM (legs, arms, legs and arms, trunk, android and gynoid FM) was measured in (kg) and divided by FM index (FMI) (kg/m2) and total FM (kg). The trunk/legs and android/gynoid ratios were calculated. For all indices of FM distribution showing a significant difference between cases and controls, we defined the receiver operating characteristic (ROC) curves, calculating the area under the curve (AUC), sensitivity, specificity, and Youden's index. Types and stages of lipedema were compared in terms of FM indices. Correlation analyses between all FM distribution indices and lipedema stages were performed. RESULTS: We included 222 women (74 with lipedema and 148 controls). Overall, the mean age was 41 years (standard deviation [SD] 11), and mean BMI was 30.9 kg/m2 (SD 7.6). A statistically significant difference was observed for all DXA-derived indices of FM distribution between groups, except for arm FM indices. The ROC curve analysis of leg FM/total FM, as a potential indicator of lipedema, resulted in an AUC of 0.90 (95% confidence interval 0.86-0.94). According to Youden's index, optimal cut-off value identifying lipedema was 0.384. Sensitivity and specificity were 0.95 and 0.73, respectively. We found no significant differences between lipedema types and stages in terms of FM indices, nor significant correlations between the latter and lipedema stages. DISCUSSION/CONCLUSION: BC assessment by DXA, and particularly calculation of the leg FM/total FM index, is a simple tool that may help clinicians rule out lipedema in doubtful cases.

  • Lipoedema is a chronic adipose tissue disorder mainly affecting women, causing excess subcutaneous fat deposition on the lower limbs with pain and tenderness. There is often a family history of lipoedema, suggesting a genetic origin, but the contribution of genetics is currently unclear. A tightly phenotyped cohort of 200 lipoedema patients was recruited from two UK specialist clinics. Objective clinical characteristics and measures of quality of life data were obtained. In an attempt to understand the genetic architecture of the disease better, genome-wide single nucleotide polymorphism (SNP) genotype data were obtained, and a genome wide association study (GWAS) was performed on 130 of the recruits. The analysis revealed genetic loci suggestively associated with the lipoedema phenotype, with further support provided by an independent cohort taken from the 100,000 Genomes Project. The top SNP rs1409440 (ORmeta ≈ 2.01, Pmeta ≈ 4 x 10–6) is located upstream of LHFPL6, which is thought to be involved with lipoma formation. Exactly how this relates to lipoedema is not yet understood. This first GWAS of a UK lipoedema cohort has identified genetic regions of suggestive association with the disease. Further replication of these findings in different populations is warranted.

  • Lipedema may be considered a model for healthy expandability of subcutaneous adipose tissue (SAT). This condition is characterized by the disproportional and symmetrical SAT accumulation in the lower-body parts and extremities, avoiding the abdominal area. There are no circulating biomarkers facilitating the diagnosis of lipedema. We tested the hypothesis that women living with lipedema present a distinct pattern of circulating parameters compared to age- and BMI-matched women. In 26 women (Age 48.3 ± 13.9 years, BMI 32.6 ± 5.8 kg/m2; lipedema group: n=13; control group: n=13), we assessed circulating parameters of glucose and lipid metabolism, inflammation, oxidative stress, sex hormones and a proteomics panel. We find that women with lipedema have better glucose metabolism regulation represented by lower HbA1c (5.55 ± 0.62%) compared to controls (6.73 ± 0.85%; p<0.001); and higher adiponectin levels (lipedema: 4.69 ± 1.99 mmol/l; control: 3.28 ± 1.00 mmol/l; p=0.038). Despite normal glycemic parameters, women with lipedema have significantly higher levels of total cholesterol (5.84 ± 0.70 mmol/L vs 4.55 ± 0.77 mmol/L in control; p<0.001), LDL-C (3.38 ± 0.68 mmol/L vs 2.38 ± 0.66 mmol/L in control; p=0.002), as well as higher circulating inflammation (top 6 based on p-values: TNFSF14, CASP8, EN-RAGE, EIF4EBP1, ADA, MCP-1) and oxidative stress markers (malondialdehyde, superoxide dismutase and catalase). Our findings suggest that the expected association between activation of inflammatory and oxidative stress pathways and impaired glucose metabolism are counterbalanced by protective factors in lipedema.

  • BACKGROUND: The aim of this study was to define outcomes after total knee arthroplasty (TKA) in lymphoedema and lipoedema patients managed by a multidisciplinary team and daily compression bandaging. METHODS: A retrospective study was performed in a single centre. Between 2007 and 2018, 36 TKA procedures were performed on 28 consecutive patients with a diagnosis of lymphoedema and lipoedema. Oxford Knee Scores (OKS), EuroQol-5D (EQ-5D) scores, satisfaction scores, radiographs, and complications were obtained at the final follow-up. Patients were admitted to the hospital up to two weeks prior to surgery and remained on the ward for daily compression bandaging by the specialist lymphoedema team. RESULTS: Over the study period, 36 TKAs were performed on 28 patients (5 males, 23 females) with a mean age of 71 years (range 54-90). Of these, 30 TKAs were in patients with lymphoedema, five with lipoedema, and one with a dual diagnosis. Overall, 28 TKAs (21 patients) were available at the final follow-up with a mean follow-up time of 61 months (range 9-138). The mean BMI was 38.5 kg/m2. The mean pre-operative and post-operative Oxford Knee Score increased from 18 (range 2-38) to 29 (range 10-54); p < 0.001. EQ-5D score increased from 0.48 (range 0.15-0.80) to 0.74 (0.34-1.00) (p < 0.001). Mean post-operative satisfaction was 7.6/10 (range 2-10), with 89.3% TKAs satisfied. Complications were one (4%, 1/28) deep vein thrombosis, one superficial wound infection, one prosthetic joint infection, one stiff knee requiring manipulation, and one intra-operative femoral fracture. CONCLUSIONS: Lymphoedema and lipoedema should not be seen as barriers to TKA if adopting a multidisciplinary approach.

  • Lipedema is a disease with abnormally increased adipose tissue deposition and distribution. Pain sensations have been described in the clinical evaluation of lipedema, but its etiology remains poorly understood. We hypothesized that pain sensitivity measurements and ex vivo quantitation of neuronal cell body distribution in the skin would be lipedema stage-dependent, and could, thus, serve to objectively characterize neuropathic pain in lipedema. The pain was assessed by questionnaire and peripheral cutaneous mechanical sensitization (von-Frey) in lipedema (n = 27) and control (n = 23) consenting female volunteers. Dermal biopsies from (n = 11) Stages 1–3 lipedema and control (n = 10) participants were characterized for neuronal cell body and nociceptive neuropeptide calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF) distribution. Stage 2 or 3 lipedema participants responded positively to von Frey sensitization in the calf and thigh, and Stage 3 participants also responded in the arm. Lipedema abdominal skin displayed reduced Tuj-1+ neuronal cell body density, compared to healthy controls, while CGRP and NGF was significantly elevated in Stage 3 lipedema tissues. Together, dermal neuronal cell body loss is consistent with hyper-sensitization in patients with lipedema. Further study of neuropathic pain in lipedema may elucidate underlying disease mechanisms and inform lipedema clinical management and treatment impact.

  • INTRODUCTION: The lower limbs are a common body site affected by chronic edema. Imaging examination of the lymphatic system is useful to diagnose lymphoedema, identify structural changes in individuals, and guide interventional strategies. In this study, we used a protocol combining indocyanine green (ICG) lymphography and ICG-guided manual lymphatic drainage (MLD) for the diagnostic assessment of lower limb lymphoedema. MATERIALS AND METHODS: Patients with lower limb lymphoedema were divided into three groups by their medical history: primary, secondary cancer-related, or secondary non-cancer-related. ICG lymphography was conducted in three phases: initial observation, MLD to accelerate ICG dye transit and reduce imaging time, and imaging data collection. Lymphatic drainage regions were recorded, and the MD Anderson Cancer Center ICG staging was applied. We collected routine lymphoedema assessment data, including limb volume and bioimpedance spectroscopy measurements. RESULTS: Three hundred and twenty-six lower limbs that underwent ICG lymphography were analyzed. Eight drainage regions were identified. The ipsilateral inguinal and popliteal were recognized as the original regions, and the remaining six regions were considered compensatory regions that occur only in lymphoedema. More than half of the secondary cancer-related lower limb lymphoedema (57.6%) continued to drain to the ipsilateral inguinal region. The incidence of drainage to the ipsilateral inguinal region was even higher for the primary (82.8%) and secondary non-cancer-related (87.1%) groups. Significant associations were observed between cancer-related lymphoedema and the presence of compensatory drainage regions. CONCLUSIONS: We proposed a prospective ICG lymphography protocol for the diagnostic assessment of lower limb lymphoedema in combination with MLD. Eight drainage regions were identified, including two original and six compensatory regions.

  • OBJECTIVES: To contribute to a more in-depth assessment of shape, volume, and asymmetry of the lower extremities in patients with lipedema or lymphedema utilizing volume information from MR imaging. METHODS: A deep learning (DL) pipeline was developed including (i) localization of anatomical landmarks (femoral heads, symphysis, knees, ankles) and (ii) quality-assured tissue segmentation to enable standardized quantification of subcutaneous (SCT) and subfascial tissue (SFT) volumes. The retrospectively derived dataset for method development consisted of 45 patients (42 female, 44.2 ± 14.8 years) who underwent clinical 3D DIXON MR-lymphangiography examinations of the lower extremities. Five-fold cross-validated training was performed on 16,573 axial slices from 40 patients and testing on 2187 axial slices from 5 patients. For landmark detection, two EfficientNet-B1 convolutional neural networks (CNNs) were applied in an ensemble. One determines the relative foot-head position of each axial slice with respect to the landmarks by regression, the other identifies all landmarks in coronal reconstructed slices using keypoint detection. After landmark detection, segmentation of SCT and SFT was performed on axial slices employing a U-Net architecture with EfficientNet-B1 as encoder. Finally, the determined landmarks were used for standardized analysis and visualization of tissue volume, distribution, and symmetry, independent of leg length, slice thickness, and patient position. RESULTS: Excellent test results were observed for landmark detection (z-deviation = 4.5 ± 3.1 mm) and segmentation (Dice score: SCT = 0.989 ± 0.004, SFT = 0.994 ± 0.002). CONCLUSIONS: The proposed DL pipeline allows for standardized analysis of tissue volume and distribution and may assist in diagnosis of lipedema and lymphedema or monitoring of conservative and surgical treatments. KEY POINTS: • Efficient use of volume information that MRI inherently provides can be extracted automatically by deep learning and enables in-depth assessment of tissue volumes in lipedema and lymphedema. • The deep learning pipeline consisting of body part regression, keypoint detection, and quality-assured tissue segmentation provides detailed information about the volume, distribution, and asymmetry of lower extremity tissues, independent of leg length, slice thickness, and patient position.

  • PURPOSE: Lipoedema is a progressive adipose (fat) disorder, and little is known about its psychological effect. This study aimed to determine the experiences of physical and mental health and health care across stages of lipoedema. METHODS: Cross-sectional, secondary data from an anonymous survey (conducted 2014-2015) in Dutch and English in those with self-reported lipoedema were used (N = 1,362, Mdnage = 41-50 years old, 80.2% diagnosed). χ2 analyses of categorical data assessed lipoedema stage groups 'Stage 1-2' (N = 423), 'Stages 3-4' (N = 474) and 'Stage Unknown' (N = 406) experiences of health (physical and psychological), and health care. RESULTS: Compared to 'Stage 1-2', 'Stage 3-4' reported more loss of mobility (p =  < .001), pain (p =  < .001), fatigue (p = .002), problems at work (p =  < .001) and were seeking treatment to improve physical functioning (p =  < .001) more frequently. 'Stage 3-4' were more likely to report their GP did not have knowledge of lipoedema, did not take them seriously, gave them diet and lifestyle advice, dismissed lipoedema, and treated them 'badly' due to overweight/lipoedema compared to 'Stage 1-2' (p =  < .001). 'Stage 3-4' were more likely to report depression (p =  < .001), emotional lability (p = .033) eating disorders (p = .018) and feeling lonelier, more fearful, and stayed at home more (p =  < .001) and less likely to have visited a psychologist (p =  < .001) compared to 'Stage 1-2'. CONCLUSIONS: A divergent pattern of physical and psychological experiences between lipoedema stages reflects physical symptom differences and differences in psychological symptoms and health care experiences. These findings increase the understanding of lipoedema symptoms to inform psychological supports for women with lipoedema in navigating chronic health care management.

  • Background: Lipedema is a distinct adipose disorder from obesity necessitating awareness as well as different management approaches to address pain and optimize quality of life (QoL). The purpose of this proof-of-principle study is to evaluate the therapeutic potential of physical therapy interventions in women with lipedema. Methods and Results: Participants with Stage 1-2 lipedema and early Stage 0-1 lymphedema (n = 5, age = 38.4 ± 13.4 years, body mass index = 27.2 ± 4.3 kg/m2) underwent nine visits of physical therapy in 6 weeks for management of symptoms impacting functional mobility and QoL. Pre- and post-therapy, participants were scanned with 3 Tesla sodium and water magnetic resonance imaging (MRI), underwent biophysical measurements, and completed questionnaires measuring function and QoL (patient-specific functional scale, PSFS, and RAND-36). Pain was measured at each visit using the 0-10 visual analog scale (VAS). Treatment effect was calculated for all study variables. The primary symptomatology measures of pain and function revealed clinically significant post-treatment improvements and large treatment effects (Cohen's d for pain VAS = -2.5 and PSFS = 4.4). The primary sodium MRI measures, leg skin sodium, and subcutaneous adipose tissue (SAT) sodium, reduced following treatment and revealed large treatment effects (Cohen's d for skin sodium = -1.2 and SAT sodium = -0.9). Conclusions: This proof-of-principle study provides support that persons with lipedema can benefit from physical therapy to manage characteristic symptoms of leg pain and improve QoL. Objective MRI measurement of reduced tissue sodium in the skin and SAT regions indicates reduced inflammation in the treated limbs. Further research is warranted to optimize the conservative therapy approach in lipedema, a condition for which curative and disease-modifying treatments are unavailable.

  • The objective of this study was to investigate the effect of manual lymphatic drainage (MLD) on the insulin resistance parameter (HOMA-IR), glycated hemoglobin (HbA1c), C-peptide, insulin, fasting plasma glucose (FPG), 2h-post-loadglucose (2h-PG) and the concentration of high-sensitivity C-reactive protein (hsCRP) in patients with abnormal body mass index. The study involved 30 patients, including patients with normal body weight (as a control group; group I; n = 14), overweight patients (group II; n = 9) and obese patients (group III; n = 7). Each patient underwent 10 sessions of MLD therapy, 3 times a week for 30 min. In addition, we measured body mass index (BMI) and waist-to-hip ratio (WHR) and performed body composition analysis as well as biochemical tests before MLD therapy (stage 0') and after MLD therapy (stage 1'). A statistically significant correlation was demonstrated between the concentration of C-peptide, BMI, the amount of visceral adipose tissue (r = 0.87, p = 0.003; r = 0.76, p = 0.003, respectively), and the HOMA-IR index, BMI and the amount of visceral adipose tissue (r = 0.86, p = 0.005; r = 0.84, p = 0.042, respectively), before and after MLD therapy. In overweight patients (group II), a statistically significant (p = 0.041) decrease in the hsCRP level by 2.9 mg/L and a significant (p = 0.050) decrease in the 2h-PG level by 12 mg/dL after the MLD therapy was detected. Moreover, in the group of obese patients (group III), a statistically significant (p = 0.013) decrease in HbA1c level by 0.2% after MLD therapy was demonstrated. Our results indicate that MLD may have a positive effect on selected biochemical parameters, with the most favorable changes in overweight patients. Further studies in a larger number of patients are warranted to confirm our findings, to test in-depth their mechanism, and to investigate clinical benefits of this alternative therapy in patients with abnormal body mass index.

  • Background The three-dimensional [3D] wound dressings Biobrane® and Epicite are used in the wound management. Fibroblasts are important for successful deep wound healing. The direct effect of Biobrane® and Epicite on human fibroblasts, particularly of juvenile individuals, remains unclear. Therefore, this study compared the survival and growth characteristics of juvenile and adult dermal fibroblasts on Biobrane® and Epicite using different culture models. Method Murine (L929), primary juvenile and adult human fibroblasts were seeded on both materials using two dimensional (2D, slide culture) or 3D culture at the medium-air interface and dynamical rotatory culture. Cell adherence, viability, morphology and actin cytoskeleton architecture were monitored. Scanning electron microscopy (SEM) analyses could be only performed from Biobrane®. Permeability and DNA amount of both materials were tested. Results The majority of all tested fibroblasts species survived on both dressings with no significant differences between 1 and 14 days. Juvenile and adult fibroblasts exerted typical fibroblast morphology with spindle-shaped cell bodies on the materials. SEM visualized morphological differences between murine and human fibroblasts on Biobrane®. Juvenile and adult fibroblasts colonized Biobrane® in rotatory culture after 7 days the most. The Biobrane® rotatory culture of L929 and juvenile fibroblasts showed after 7 days the significantly highest DNA amount. No major gender differences could be observed. Biobrane® had a higher permeability than Epicite. Conclusion Both wound dressing can be colonized by fibroblasts suggesting their high cytocompatibility. Fibroblast survival and morphology on Biobrane® and Epicite depended on the culture system and the fibroblast source.

  • Background: Lipedema of lower limbs is characterized by bilateral accumulations of excess adipose tissue starting from the ankle to the hips and buttocks. The studies with lymphoscintigraphy (LSC) and magnetic resonance (MR) lymphography show altered transport index and enlarged lymphatic vessels (LVs). Our studies aimed to investigate the superficial lymph flow, water accumulation, skin and subcutaneous tissue elasticity, and the possibility of using this information to diagnose lipedema. Methods and Results: Fifty patients with lipedema and 50 control subjects (women) were included. The Indocyanine Green (ICG) lymphography, LSC, skin water measurement, skin durometry, and deep tissue tonometry were done in all participants. ICG lymphography revealed: (1) Slower lymph flow in lipedema patients; after 3 minutes of feet movement in a horizontal position, the ICG-dyed lymph reached the upper calf level in 8% of lipedema patients compared with 56% in the control group (p ˂ 0.0001). (2) More than three LVs were noticed more often in lipedema patients. (3) The higher number of abnormal LV images at all limb levels and during each observation stage with a statistically significant number of foggy and dilated. (4) Statistically significant higher fluorescent intensity in all limb levels. Skin water concentration was higher in the feet in lipedema (p = 0.000189). Conclusion: Our studies have shown the differences in superficial lymph flow and water concentration between lipedema and normal limbs. Data proove the usefulness of ICG lymphography, skin water concentration and skin and subcutaneous tissue elasticity measurements in diagnosing lipedema.

  • In early 2019, the Lipedema Foundation, in partnership with advisors from the Lipedema patient and research communities, launched the Lipedema Foundation Registry — an initial confidential survey to help understand the condition. After three years, we are ecstatic to share this Registry First Look report, providing perspective on the diverse experiences of people with Lipedema. We are tremendously thankful to those who contributed their time and insights, without which this report would not have been possible. This report includes data from the first 521 fully completed Registry surveys from people who believe they have Lipedema, out of 2,000 in-progress responses. These 521 people represent 14,556 years of lived experience with Lipedema, across dimensions including: • Diagnosis: This report focuses on the experiences of 521 people who either report having received a Lipedema diagnosis, or have symptoms sufficient for them to believe they have Lipedema. Data from non-Lipedema populations has been collected, but is not presented in this report. • Amount of time living with Lipedema: Participants include women with less than 10 years duration of the condition, though almost half of survey respondents had lived with Lipedema for more than 30 years at the time of participation. • Geography: Though only in English at this time, the Registry is multinational, with 21% of contributions from outside the US. Much captured here is consistent with existing academic literature and surveys. Findings include: • The Registry data is consistent with research showing the majority of patients first notice symptoms around the time of puberty; more specifically, the Registry data shows peak onset of symptoms between ages 12 and 14. • As widely reported by patients, this data shows long delays between onset and treatment. On average, women sought medical attention 17 years after first noticing symptoms, and received a diagnosis 10 years later. • Participants were able to identify Lipedema-like features in their bodies at frequencies consistent with the medical literature. They found Lipedema-like texture throughout their bodies, though most frequently in the arms and legs. • Both typical and flaring pain are common. Heaviness, bruising, and sensitivity to touch are also common and speak further to patients’ quality of life. After analyzing the data, the Lipedema Foundation team conducted two focus groups with patients to help understand and contextualize the findings. Their interpretations, insights and quotes appear throughout. Though this report is a great start, we hope it can be a tool to advance Lipedema awareness, understanding and care. Key next steps include: • Challenging healthcare professionals to recognize and understand Lipedema, and stop stigmatizing and dismissing patients when they seek care. • Informing scientific hypotheses and the research agenda. • Expanding and diversifying Registry participation, to ensure it represents the true diversity of the Lipedema patient population. Analysis of patient experience reminds us that Lipedema can present in many ways. This diversity asks us to take a closer look at typical descriptions of Lipedema, and this report should influence how we think about anatomical changes in Lipedema and progression of the disorder. These insights must be followed up with formal medical studies, but many hypotheses to be tested have been captured here in the patients’ own voices.

Last update from database: 3/12/25, 8:25 AM (UTC)