Your search

Results 279 resources

  • Einleitung: Die Diagnostik des Lipödems basiert bislang auf rein klinischen Befunden, objektive Parameter fehlen bislang. Ziel dieser Studie ist es, einen möglichen Zusammen-hang zwischen einer standardisierten, sonographisch gemessenen Kompressibilität der subkutanen Fettschicht sowie dem Vergleich der Hautfettfalten an Abdomen und Oberschenkel und der klinischen Diagnose Lipödem aufzuzeigen. Material und Methode: Das Grundkollektiv zur Probandinnen-Auswahl bestand aus 1100 Patientinnen und Patienten. Davon wurden 1016 Patientinnen und Patienten wegen zutreffender Ausschlusskriterien ausgeschlossen. Die verbliebenen 84 Patientinnen wurden auf die klinische Diagnose „Lipödem der Beine“ untersucht. Die klinische Diagnose „Lipödem“ war bei 71 Patientinnen positiv und bei 13 Patientinnen negativ. Insgesamt haben drei Patientinnen die Teilnahme verweigert (eine mit negativer Diagnose, zwei mit positiver Diagnose); damit wurden 69 Patientinnen in der Gruppe der Lipödempatientinnen und zwölf Patientinnen in der Kontrollgruppe untersucht. Zudem wurden als weitere Kontrollgruppe sieben männliche „gesunde“ Probanden mit derselben Technik vermessen und verglichen. An Daten wurden für alle Probandinnen und Probanden das Alter, BMI, Verhältnis von Abdomen- zu Oberschenkelhautfettfalte (nur rechts), Subkutisdicke am Oberschenkel unkomprimiert und komprimiert auf beiden Seiten erhoben. Resultate: Die Annahme, dass die Subkutis bei Lipödempatientinnen deutlich geringer kompressierbar ist, konnte an 69 Lipödempatientinnen, die keinerlei Lymphödemsymptomatik zeigten, verifiziert werden. Die Kontrollgruppen (sieben Männer, zwölf Frauen) verhielten sich diesbezüglich negativ. Der Mittelwert dieser Kompressibilität lag in der Lipödemgruppe bei 7 %, in den Kontrollgruppen bei 22 % (Männer) bzw. 16 % (Frauen ohne Lipödem). Das Verhältnis der Hautfettfalten an Abdomen und Oberschenkel war bei Lipödempatientinnen mit im Mittel 0,43 signifikant unter den anderen Gruppen (Männer: 1,45; Frauen ohne Lipödem: 1,16). Diskussion: Die sonographisch gemessene Kompressibilität der Subkutis stellt einen wichtigen, objektiven Parameter zur Diagnostik des Lipödems dar. Eine zusätzliche positive Aussage liefert zudem der Vergleich der Hautfettfaltendicke an Abdomen und Oberschenkel mit statistisch signifikanten Unterschieden.

  • BACKGROUND: Although a large number of adult women worldwide are affected by lipedema, the physiologic conditions triggering onset and progression of this chronic disease remain enigmatic. In the present study, a descriptive epidemiologic situation of postoperative lipedema patients is presented. METHODS: The authors developed an online survey questionnaire for lipedema patients in Germany. The survey was conducted on 209 female patients who had been diagnosed with lipedema and had undergone tumescent liposuction. RESULTS: Most of the participants (average age, 38.5 years) had noticed a first manifestation of the disease at the age of 16. It took a mean of 15 years to accomplish diagnosis. Liposuction led to a significant reduction of pain, swelling, tenderness, and easy bruising as confirmed by the majority of patients. Hypothyroidism [n = 75 (35.9 percent) and depression [n = 48 (23.0 percent)] occurred at a frequency far beyond the average prevalence in the German population. The prevalence of diabetes type 1 [n = 3 (1.4 percent)], and diabetes type 2 [n = 2 (1 percent)] was particularly low among the respondents. Forty-seven of the lipedema patients (approximately 22.5 percent) suffered from a diagnosed migraine. Following liposuction, the frequency and/or intensity of migraine attacks became markedly reduced, as stated by 32 patients (68.1 percent). CONCLUSIONS: Quality of life increases significantly after surgery with a reduction of pain and swelling and decreased tendency to easy bruising. The high prevalence of hypothyroidism in lipedema patients could be related to the frequently observed lipedema-associated obesity. The low prevalence of diabetes, dyslipidemia, and hypertension appears to be a specific characteristic distinguishing lipedema from lifestyle-induced obesity.

  • Background: Lipedema and Dercum's disease (DD) are incompletely characterized adipose tissue diseases, and objective measures of disease profiles are needed to aid in differential diagnosis. We hypothesized that fluid properties, quantified as tissue water bioimpedance in the upper and lower extremities, differ regionally between these conditions. Methods and Results: Women (cumulative n = 156) with lipedema (n = 110), DD (n = 25), or without an adipose disease matched for age and body mass index to early stage lipedema patients (i.e., controls n = 21) were enrolled. Bioimpedance spectroscopy (BIS) was applied to measure impedance values in the arms and legs, indicative of extracellular water levels. Impedance values were recorded for each limb, as well as the leg-to-arm impedance ratio. Regression models were applied to evaluate hypothesized relationships between impedance and clinical indicators of disease (significance criteria: two-sided p < 0.05). Higher extracellular water was indicated (i) in the legs of patients with higher compared with lower stages of lipedema (p = 0.03), (ii) in the leg-to-arm impedance ratio in patients with lipedema compared with patients with DD (p ≤ 0.001), and (iii) in the leg-to-arm impedance ratio in patients with stage 1 lipedema compared with controls (p ≤ 0.01). Conclusion: BIS is a noninvasive portable modality to assess tissue water, and this device is available in both specialized and nonspecialized centers. These findings support that regional bioimpedance measures may help to distinguish lipedema from DD, as well as to identify early stages of lipedema.

  • Background: Lipedema and Dercum's disease (DD) are incompletely characterized adipose tissue diseases, and objective measures of disease profiles are needed to aid in differential diagnosis. We hypothesized that fluid properties, quantified as tissue water bioimpedance in the upper and lower extremities, differ regionally between these conditions. Methods and Results: Women (cumulative n = 156) with lipedema (n = 110), DD (n = 25), or without an adipose disease matched for age and body mass index to early stage lipedema patients (i.e., controls n = 21) were enrolled. Bioimpedance spectroscopy (BIS) was applied to measure impedance values in the arms and legs, indicative of extracellular water levels. Impedance values were recorded for each limb, as well as the leg-to-arm impedance ratio. Regression models were applied to evaluate hypothesized relationships between impedance and clinical indicators of disease (significance criteria: two-sided p < 0.05). Higher extracellular water was indicated (i) in the legs of patients with higher compared with lower stages of lipedema (p = 0.03), (ii) in the leg-to-arm impedance ratio in patients with lipedema compared with patients with DD (p ≤ 0.001), and (iii) in the leg-to-arm impedance ratio in patients with stage 1 lipedema compared with controls (p ≤ 0.01). Conclusion: BIS is a noninvasive portable modality to assess tissue water, and this device is available in both specialized and nonspecialized centers. These findings support that regional bioimpedance measures may help to distinguish lipedema from DD, as well as to identify early stages of lipedema.

  • Lipedema is a painful fat disease of loose connective tissue usually misdiagnosed as lifestyle-induced obesity that affects ~10% of women of European descent as well as other populations. Lipedema is characterized by symmetric enlargement of the buttocks, hips, and legs due to increased loose connective tissue; arms are also affected in 80% of patients. Lipedema loose connective tissue is characterized by hypertrophic adipocytes, inflammatory cells, and dilated leaky blood and lymphatic vessels. Altered fluid flux through the tissue causes accumulation of fluid, protein, and other constituents in the interstitium resulting in recruitment of inflammatory cells, which in turn stimulates fibrosis and results in difficulty in weight loss. Inflammation and excess interstitial substance may also activate nerve fibers instigating the painful lipedema fat tissue. More research is needed to characterize lipedema loose connective tissue structure in depth, as well as the form and function of blood and lymphatic vessels. Understanding the pathophysiology of the disease will allow healthcare providers to diagnose the disease and develop treatments.

  • Obesity is a worldwide major public health problem with an alarmingly increasing prevalence over the past 2 decades. The consequences of obesity in the skin are underestimated. In this paper, we review the effect of obesity on the skin, including how increased body mass index affects skin physiology, skin barrier, collagen structure, and wound healing. Obesity also affects sebaceous and sweat glands and causes circulatory and lymphatic changes. Common skin manifestations related to obesity include acanthosis nigricans, acrochordons, keratosis pilaris, striae distensae, cellulite, and plantar hyperkeratosis. Obesity has metabolic effects, such as causing hyperandrogenism and gout, which in turn are associated with cutaneous manifestations. Furthermore, obesity is associated with an increased incidence of bacterial and Candida skin infections, as well as onychomycosis, inflammatory skin diseases, and chronic dermatoses like hidradenitis suppurativa, psoriasis, and rosacea. The association between atopic dermatitis and obesity and the increased risk of skin cancer among obese patients is debatable. Obesity is also related to rare skin conditions and to premature hair graying. As physicians, understanding these clinical signs and the underlying systemic disorders will facilitate earlier diagnoses for better treatment and avoidance of sequelae.

  • Lipedema is a chronic progressive disease characterized by abnormal fat distribution resulting in disproportionate, painful limbs. It almost exclusively affects women, leading to considerable disability, daily functioning impairment, and psychosocial distress. Literature shows both scarce and conflicting data regarding its prevalence. Lipedema has been considered a rare entity by several authors, though it may be a far more frequent condition than thought. Despite the clinical impact on women's health, lipedema is in fact mostly unknown, underdiagnosed, and too often misdiagnosed with other similarly presenting diseases. Polygenic susceptibility combined with hormonal, microvascular, and lymphatic disorders may be partly responsible for its development. Furthermore, consistent information on lipedema pathophysiology is still lacking, and an etiological treatment is not yet available. Weight loss measures exhibit minimal effect on the abnormal body fat distribution, resulting in eating disorders, increased obesity risk, depression, and other psychological complaints. Surgical techniques, such as liposuction and excisional lipectomy, represent therapeutic options in selected cases. This review aims to outline current evidence regarding lipedema epidemiology, pathophysiology, clinical presentation, differential diagnosis, and management. Increased awareness and a better understanding of its clinical presentation and pathophysiology are warranted to enable clinicians to diagnose and treat affected patients at an earlier stage.

  • Lipedema is a chronic progressive disease characterized by abnormal fat distribution resulting in disproportionate, painful limbs. It almost exclusively affects women, leading to considerable disability, daily functioning impairment, and psychosocial distress. Literature shows both scarce and conflicting data regarding its prevalence. Lipedema has been considered a rare entity by several authors, though it may be a far more frequent condition than thought. Despite the clinical impact on women's health, lipedema is in fact mostly unknown, underdiagnosed, and too often misdiagnosed with other similarly presenting diseases. Polygenic susceptibility combined with hormonal, microvascular, and lymphatic disorders may be partly responsible for its development. Furthermore, consistent information on lipedema pathophysiology is still lacking, and an etiological treatment is not yet available. Weight loss measures exhibit minimal effect on the abnormal body fat distribution, resulting in eating disorders, increased obesity risk, depression, and other psychological complaints. Surgical techniques, such as liposuction and excisional lipectomy, represent therapeutic options in selected cases. This review aims to outline current evidence regarding lipedema epidemiology, pathophysiology, clinical presentation, differential diagnosis, and management. Increased awareness and a better understanding of its clinical presentation and pathophysiology are warranted to enable clinicians to diagnose and treat affected patients at an earlier stage.

  • BACKGROUND: Adipose-derived Stem Cells (ASCs) present great potential for reconstructive procedures. Currently, isolation by enzyme digestion and culturing using xenogenic substances remain the gold standard, impairing clinical use. METHODS: Abdominal lipo-aspirate and blood samples were obtained from healthy patients. A novel mechanical isolation method for ASCs was compared to (the standard) collagenase digestion. ASCs are examined by flowcytometry and multilineage differentiation assays. Cell cultures were performed without xenogenic or toxic substances, using autologous plasma extracted from peripheral blood. After eGFP-transfection, an in vivo differentiation assay was performed. RESULTS: Mechanical isolation is more successful in isolating CD34+/CD31-/CD45-/CD13+/CD73+/CD146- ASCs from lipo-aspirate than isolation via collagenase digestion (p <0 .05). ASCs display multilineage differentiation potential in vitro. Autologous plasma is a valid additive for ASCs culturing. eGFP-ASCs, retrieved after 3 months in vivo, differentiated in adipocytes and endothelial cells. CONCLUSION: A practical method for human ASC isolation and culturing from abdominal lipo-aspirate, without the addition of xenogenic substances, is described. The mechanical protocol is more successful than the current gold standard protocol of enzyme digestion. These results are important in the translation of laboratory-based cell cultures to clinical reconstructive and aesthetic applications.

  • Background: Sonographic findings differ in patients with primary lipedema from those with lymphedema. This project was designed to quantify those differences and objectively characterize findings of lipedema and lymphedema in the lower extremity. Methods and Results: Patients with a clinical diagnosis of ISL stage I-II lipedema or lower extremity lymphedema that received ultrasound evaluation were included in this study. Thickness and echogenicity of the skin and subcutaneous fat layer were measured at the level of the ankle, calf, and thigh in each patient. The cohort analyzed included 12 patients with lipedema (12 lower extremities) and 10 patients with unilateral lymphedema (10 lower extremities with lymphedema and 8 lower extremities used as controls). Mean skin thickness of the ankle and calf was greatest in the lymphedema group compared to those with lipedema or controls (p < 0.01 and p < 0.01, respectively). The mean thickness of the subcutaneous fat layer of the thigh was greatest in those with lipedema (p < 0.01). Mean dermal to subcutaneous fat echogenicity ratio was decreased in those with lymphedema (ankle, 0.91; calf, 1.05; thigh, 1.19) compared to lipedema (ankle, 1.36; calf, 1.58; thigh, 1.54) and control (ankle, 1.26; calf, 1.54; thigh, 1.56) (p < 0.01, p < 0.01, and p = 0.02, respectively). Conclusions: Lymphedema appears to be associated with increased skin thickness and dermal hypoechogenicity, particularly in the distal lower extremity, compared to lipedema or controls. Conversely, lipedema may be associated with increased thickness and hypoechogenicity of the subcutaneous fat. Overall, these findings suggest that ultrasound may be an effective tool to differentiate these diseases and potentially guide treatment.

  • Syndromes with localized accumulation of subcutaneous fatty tissue belong to a group of genetically and phenotypically heterogeneous disorders. These diseases may show some common signs, such as nodular fat, symmetrical fat masses, obesity, fatigue, lymphedema and symmetrical lipomas (painful or otherwise). Other symptoms may be specific for the different clinical entities, enabling correct differential diagnosis. Disorders belonging to this spectrum are lipedema, generalized diffuse or nodular forms of Dercum disease, localized nodular Dercum disease and multiple symmetric lipomatosis. Here we summarize the genes involved in syndromes with localized accumulation of subcutaneous fat and the test we use for genetic analysis.

  • Background: Although lipedema is often clinically distinguished from lymphedema, there is considerable overlap between the 2 entities. The purpose of this study was to evaluate lymphoscintigraphic findings in patients with lipedema to better characterize lymphatic flow in this patient population. Methods: This is an updated 4 year experience containing significant new information of patients with lipedema receiving lymphoscintigraphy at our institution between January 2015 and October 2017. Patient demographics, clinical characteristics, and lymphoscintigraphic findings were extracted. Klienhan’s transport index (TI) was utilized to assess lymphatic flow in patient’s lower extremities (LEs). Scores range from 0-45, with values >10 denoting pathologic lymphatic transport. Results: 19 total patients with lipedema underwent lymphoscintigraphic evaluation. Mean age was 54.8 and mean BMI was 35.9 kg/m2. Severity of lipedema was classified as stage 1 in 5 patients (26.3%), stage 2 in 4 patients (21.1%), stage 3 in 4 patients (21.1%), and stage 4 in 6 patients (31.6%). The mean TI for all extremities was 12.5. 24 (63.2%) LEs had a pathologic TI , including 7 LEs with stage 1 (29.2%), 3 LEs with stage 2 (12.5%), 6 LEs with stage 3 (25.0%), and 8 LEs with stage 4 lipedema (33.3%). The mean TI was significantly greater for extremities with severe (stage 3/4) lipedema than those with mild or moderate (stage 1/2) lipedema (15.1 vs. 9.7, p=0.049). Mean difference in TI scores between each LE for individual patients was 6.43 (SD 7.96). Conclusions: Our results suggest that patients with lipedema have impaired lymphatic transport, and more severe lipedema may be associated with greater lymphatic transport abnormalities.

  • BACKGROUND: Lipedema is characterized by localized accumulation of fat in the extremities, which is typically unresponsive to dietary regimens or physical activity. Although the disease is well described and has a high incidence, little is known regarding the molecular and cellular mechanisms underlying its pathogenesis. The aim of this study was to investigate the pathophysiology of lipedema adipose cells in vitro. METHODS: Adipose-derived stem cells were isolated from lipoaspirates derived from lipedema and nonlipedema patients undergoing tumescent liposuction. In vitro differentiation studies were performed for up to 14 days using adipogenic or regular culture medium. Supernatants and cell lysates were tested for adiponectin, leptin, insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 content at days 7 and 14, using enzyme-linked immunosorbent assays. Adipogenesis was evaluated by visualizing and measuring cytoplasmic lipid accumulation. RESULTS: Lipedema adipose-derived stem cells showed impeded adipogenesis already at early stages of in vitro differentiation. Concomitant with a strongly reduced cytoplasmic lipid accumulation, significantly lower amounts of adiponectin and leptin were detectable in supernatants from lipedema adipose-derived stem cells and adipocytes compared with control cells. In addition, lipedema and nonlipedema cells differed in their expression of insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 and in their proliferative activity. CONCLUSIONS: The authors' findings indicate that in vitro adipogenesis of lipedema adipose-derived stem cells is severely hampered compared with nonlipedema adipose-derived stem cells. Lipedema adipose cells differ not only in their lipid storage capacity but also in their adipokine expression pattern. This might serve as a valuable marker for diagnosis of lipedema, probably from an early stage on.

  • Lipoedema is a progressive disorder that is characterized by an abnormal distribution of subcutaneous adipose tissue, which results in a disproportion between the extremities and the trunk. This vascular/dermatological disease might have a detrimental impact on psychosocial wellbeing and quality of life. In this article, we report on a patient with morbid obesity that had a Roux en-Y Gastric bypass with sufficient weight loss. However, due to this weight loss, an abnormal disproportion came to light. A dermatologist diagnosed lipoedema five years after the surgery. Eventually, she had a dermolipectomy of the upper arms, of which reimbursement was initially rejected by her insurance.

  • 640 patients from a specialist clinic for operative lymphology were surveyed with the help by a questionnaire issued by the German Society of Pain Therapy (Deutsche Schmerzgesellschaft e. V.). This survey collected responses to questions about pain and pain characteristics as well as demographic data. It revealed that only a little more than 50 % of respondents were genuine cases of obesity. Lipoedema and obesity must therefore be regarded as clinical pictures unrelated to one another. The pain was mostly described as pressing and tearing in nature. Attributes such as throbbing or pulsing, consistent with acute inflammation, were rated as "not applicable". Symptoms were independent of the BMI, which is only useable to a limited extent in lipohyperplasia dolorosa. On the whole, the main symptom "pain" is multi-faceted. The study initiated by the German Federal Joint Committee (G-BA) must therefore be viewed critically. Congenital (as opposed to acquired) lipoedema fat on the extremities significantly impairs a person's ability to undertake activities in general as well as leisure activities. Since no objectively verifiable findings in lipoedema can be ascertained thus far, the diagnosis should be based on a careful patient survey.

  • INTRODUCTION: Lipedema is a barely recognized and poorly diagnosed, but common disease affecting almost exclusively female patients. The pathomechanism of lipedema is not known, and clinically, it is a bilateral, symmetrical, disproportional fatty enlargement of the lower half of the body, the disease does not affect the feet, and the upper extremities are often involved. Since lipedema is associated with increased aortic stiffness and altered left ventricular (LV) rotational mechanics, the present study was designed to compare the size and function of the mitral annulus (MA) between lipedema patients and controls by three-dimensional speckle-tracking echocardiography (3DSTE). METHODS: Twenty-four patients with stage 2 lipedema and 48 age-, gender-, and body mass index-matched healthy control patients were included in the study. Each person from the lipedema and the control groups underwent two-dimensional Doppler echocardiography and 3DSTE. RESULTS: Significantly enlarged left atrial diameter, LV end-diastolic diameter and volume, and LV end-systolic volume could be detected in lipedema patients as compared to controls. None of the lipedema patients and controls showed ≥grade 1 mitral or tricuspid regurgitation. Dilated end-systolic and end-diastolic MA diameter, area, and perimeter could be demonstrated in lipedema patients as compared to controls, and these changes were accompanied by impaired MA fractional area change at rest. Following 1-hour use of compression stockings, no significant improvement was seen in these parameters. CONCLUSIONS: Lipedema is associated with MA enlargement and functional impairment. The use of compression stockings does not improve these alterations.

  • OBJECTIVE: The aim of this qualitative review is to provide an update on the current understanding of the genetic determinants of lipedema and to develop a genetic test to differentiate lipedema from other diagnoses. MATERIALS AND METHODS: An electronic search was conducted in MEDLINE, PubMed, and Scopus for articles published in English up to March 2019. Lipedema and similar disorders included in the differential diagnosis of lipedema were searched in the clinical synopsis section of OMIM, in GeneCards, Orphanet, and MalaCards. RESULTS: The search identified several genetic factors related to the onset of lipedema and highlighted the utility of developing genetic diagnostic testing to help differentiate lipedema from other diagnoses. CONCLUSIONS: No genetic tests or guidelines for molecular diagnosis of lipedema are currently available, despite the fact that genetic testing is fundamental for the differential diagnosis of lipedema against Mendelian genetic obesity, primary lymphedema, and lipodystrophies.

Last update from database: 6/14/24, 7:35 AM (UTC)